Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Carbon Capture, Storage and Use - Technical, Economic, Environmental and Societal Perspectives
  Großes Bild
 
Carbon Capture, Storage and Use - Technical, Economic, Environmental and Societal Perspectives
von: Wilhelm Kuckshinrichs, Jürgen-Friedrich Hake
Springer-Verlag, 2014
ISBN: 9783319119434
352 Seiten, Download: 6642 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: A (einfacher Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 6  
  Contents 8  
  List of Figures 10  
  List of Tables 14  
  Contributors 16  
  Chapter 1: Carbon Capture and Utilization as an Option for Climate Change Mitigation: Integrated Technology Assessment 19  
     1.1 CCS as an Option for Climate Change Mitigation and CO2 for Industrial Application 19  
     1.2 Methodological Approach of an Integrated Technology Assessment for CCS and Structure of the Study 22  
        1.2.1 Technical Potential, RandD Work, and Degree of Technical Maturity 23  
        1.2.2 Application in Science and Industry 24  
        1.2.3 Framework for Energy and Climate Policy 25  
     1.3 Energy and Industrial Policy Implications from a German Perspective 25  
     References 26  
  Part I: Technologies: Status and RandD Prospects 28  
     Chapter 2: Carbon Capture Technologies 29  
        2.1 Introduction 29  
        2.2 Carbon Capture Technologies for Use in Coal-Fired Power Plants 31  
           2.2.1 Post-combustion Processes 32  
              2.2.1.1 State of the Art 32  
              2.2.1.2 Efficiency Losses 33  
              2.2.1.3 Advantages and Disadvantages of Post-combustion Processes 34  
              2.2.1.4 Second-Generation Post-combustion Processes 34  
           2.2.2 Oxyfuel Processes 35  
              2.2.2.1 State of the Art 35  
              2.2.2.2 Efficiency Losses 36  
              2.2.2.3 Advantages and Disadvantages of Cryogenic Oxyfuel Processes 37  
              2.2.2.4 Second-Generation Oxyfuel Processes 37  
           2.2.3 Pre-combustion Processes 38  
              2.2.3.1 State of the Art 38  
              2.2.3.2 Efficiency Losses 39  
              2.2.3.3 Advantages and Disadvantages of Pre-combustion Processes 39  
              2.2.3.4 Second-Generation Pre-combustion Processes 40  
        2.3 Future Framework Conditions and Requirements for the Implementation of Power Plants with Carbon Capture 40  
           2.3.1 Flexibility of Power Plants 41  
              2.3.1.1 Post-combustion Processes 42  
              2.3.1.2 Oxyfuel Processes 43  
              2.3.1.3 Pre-combustion Processes 43  
           2.3.2 Retrofitting the Existing Power Plant Fleet 44  
              2.3.2.1 Excursus: Germany 45  
              2.3.2.2 Suitability of Carbon Capture Technologies for Retrofitting 45  
              2.3.2.3 Oxyfuel Processes 46  
              2.3.2.4 Post-combustion Processes 46  
        2.4 Carbon Capture Processes for Industrial Applications 47  
           2.4.1 Steel and Iron Production 50  
           2.4.2 Cement and Clinker Production 51  
           2.4.3 Refineries 52  
           2.4.4 Ammonia Synthesis 53  
           2.4.5 Ethylene Oxide Production 53  
           2.4.6 Excursus: Carbon Capture During Biogas Treatment 54  
        2.5 Summary and Conclusions 56  
        References 57  
     Chapter 3: CO2 Transportation 62  
        3.1 Introduction 63  
        3.2 Current Situation 63  
        3.3 Purity Level and Quality Criteria 66  
        3.4 Risks of CO2 Transportation 69  
           3.4.1 Dangers of CO2 69  
           3.4.2 Hazard Potential 70  
           3.4.3 Operational Experience 70  
           3.4.4 Measures Minimizing Risks 72  
           3.4.5 Evaluation of Transportation Risks 72  
           3.4.6 Estimation of Risk Zones 73  
           3.4.7 Categorization of Technical Risks 75  
           3.4.8 Uncertainties in the Assessment 77  
        3.5 Summary and Conclusions 78  
        References 79  
     Chapter 4: Opportunities for Utilizing and Recycling CO2 81  
        4.1 Motivation and Background 81  
        4.2 Evaluation Framework and Criteria 82  
           4.2.1 Potential for the Material Utilization and Recycling of CO2 82  
           4.2.2 Sources and Purity of CO2 84  
           4.2.3 Evaluation Criteria for CO2-Utilization 84  
        4.3 Organochemical Utilization of CO2 85  
           4.3.1 Applications 86  
              4.3.1.1 Urea 86  
              4.3.1.2 Methanol 87  
              4.3.1.3 Salicylic Acid and p-Hydroxybenzoic Acid 89  
              4.3.1.4 Formic Acid 89  
              4.3.1.5 Cyclic Carbonates 90  
              4.3.1.6 Dimethyl Carbonate 91  
              4.3.1.7 Polymers (Copolymerization of Reactive Monomers with CO2) 91  
              4.3.1.8 Further Polymer Building Blocks 92  
              4.3.1.9 Pharmaceuticals and Fine Chemicals 92  
           4.3.2 Outlook 93  
        4.4 Inorganic Substances 94  
           4.4.1 Calcite 94  
           4.4.2 Hydrotalcite 94  
           4.4.3 Other Application Areas 95  
        4.5 Physical Utilization 95  
           4.5.1 Enhanced Oil Recovery/Enhanced Gas Recovery 95  
           4.5.2 Enhanced Coal Bed Methane (ECBM) 96  
           4.5.3 Methods for the Reversible Adsorption of CO2 96  
           4.5.4 Application in the Beverage and Food Industry 97  
           4.5.5 Cleaning Agents and Extractants 98  
           4.5.6 Use as an Impregnating Agent 98  
           4.5.7 Inert Gas 99  
           4.5.8 Potential as a Solvent and Replacement of Volatile Organic Compounds 99  
        4.6 Evaluation of Especially Innovative Solution Approaches 100  
           4.6.1 Material CO2-Utilization and Innovative Products 100  
              4.6.1.1 Polymers from Technically Fixated CO2 (Duromers, Polycarbonates, Polycondensates) 100  
              4.6.1.2 Fine Chemicals 102  
              4.6.1.3 Production of Methanol by Direct Hydrogenation of CO2 103  
              4.6.1.4 Oxalic Acid 103  
           4.6.2 Innovative Technologies for Material CO2-Utilization 103  
              4.6.2.1 Polymers from CO2 104  
              4.6.2.2 CO2-Hydrogenation 104  
              4.6.2.3 Electrochemical Activation of CO2 105  
              4.6.2.4 Photocatalytic Activation of CO2 105  
        4.7 Conclusions 106  
        References 108  
     Chapter 5: Environmental Aspects of CCS 115  
        5.1 Introduction 115  
        5.2 Life Cycle Assessment as an Ecological Evaluation Method 116  
        5.3 Environmental Effects of Conventional Capture Technologies 117  
           5.3.1 Technology-Related Differences 117  
              5.3.1.1 Capture Technologies 117  
              5.3.1.2 CO2 Transportation and Storage 120  
              5.3.1.3 Origin and Composition of Fuels 122  
           5.3.2 Differences Arising from the LCA Methodology 122  
              5.3.2.1 Impact Categories 122  
              5.3.2.2 Time Horizon 123  
              5.3.2.3 Spatial Representation 123  
              5.3.2.4 Upstream and Downstream Process Chains 124  
           5.3.3 CCS Technologies and Their Environmental Impacts 126  
              5.3.3.1 Hard Coal and Lignite 127  
              5.3.3.2 Natural Gas 130  
        5.4 Environmental Aspects of Future Capture Technologies of the 2nd Generation 131  
           5.4.1 Power Plant Concepts 131  
              5.4.1.1 Reference Power Plant (RPP SC) Without CCS 132  
              5.4.1.2 Oxyfuel Concept 132  
              5.4.1.3 Cryogenic Air Separation (C ASU) 132  
              5.4.1.4 Membrane-Based Air Separation (HTM ASU) 133  
           5.4.2 Results of the Life Cycle Inventory 134  
           5.4.3 Results of the Impact Assessment 135  
           5.4.4 Interpretation 137  
        5.5 Summary and Conclusions 137  
        References 138  
     Chapter 6: Safe Operation of Geological CO2 Storage Using the Example of the Pilot Site in Ketzin 141  
        6.1 Introduction and Motivation 141  
        6.2 Processes of Retaining CO2 in Porous Reservoir Rocks 142  
        6.3 Potential Leakage from CO2 Storage 144  
        6.4 Safety of the Geological Storage of CO2 146  
        6.5 Monitoring of CO2 Storage 147  
        6.6 Experience from the Pilot Site in Ketzin 149  
           6.6.1 Storage of CO2 Is Safe and Reliable 150  
           6.6.2 Combination of Geochemical and Geophysical Monitoring Methods for Detecting Small Amounts of CO2 151  
           6.6.3 Fluid Rock Interactions Do Not Impact the Storage Integrity 151  
           6.6.4 Numerical Simulations Depict the Temporal and Spatial Behaviour of Injected CO2 151  
        6.7 CO2 Storage as a Component of Energy Storage for a Closed Carbon Cycle 153  
        6.8 Summary and Conclusions 154  
        References 155  
  Part II: Economic and Social Perspectives 158  
     Chapter 7: Economic Analysis of Carbon Capture in the Energy Sector 159  
        7.1 Introduction and Motivation 159  
        7.2 Demonstration Plants 160  
           7.2.1 Demonstration Plants for Electricity Generation 160  
           7.2.2 Learning Rates 162  
              Preliminary Conclusions 163  
        7.3 Commercial Use of CCS 163  
           7.3.1 Cost and Process Parameters 163  
           7.3.2 Electricity Generation and CO2 Avoidance Costs 167  
           7.3.3 Sensitivity Calculations 168  
              Preliminary Conclusions 171  
        7.4 Electricity Production and Power Exchange Price for CCS Power Plant Usage in Germany 172  
           7.4.1 Pricing on the Electricity Market 172  
           7.4.2 Use of CCS Power Plants 173  
              Preliminary Conclusions 177  
        7.5 Summary and Conclusions 178  
        Appendix 179  
           LCOE 179  
           CAC 180  
           Learning Curves 180  
           Methodological Approach for Merit Order Analyses 181  
        References 181  
     Chapter 8: Cost Analysis for CCS in Selected Carbon-Intensive Industries 184  
        8.1 Introduction and Motivation 184  
        8.2 Methodology of Cost Analysis 185  
           8.2.1 Methodological Approach 185  
           8.2.2 Model Plants and Baseline Data for Cost Analysis 187  
        8.3 Results 187  
           8.3.1 Levelized Production Costs and CO2 Avoidance Costs 187  
           8.3.2 Sensitivity Calculations 189  
        8.4 Summary 192  
        References 192  
     Chapter 9: CCS Transportation Infrastructures: Technologies, Costs, and Regulation 194  
        9.1 Introduction 194  
        9.2 Optimal CCS Infrastructures and Costs 197  
        9.3 One-Dimensional Infrastructure Model 202  
        9.4 A Welfare-Maximizing Infrastructure Taking into Account Long-Term Business Decisions 205  
        9.5 Regulation 207  
        9.6 Summary and Conclusions 208  
        References 209  
     Chapter 10: The System Value of CCS Technologies in the Context of CO2 Mitigation Scenarios for Germany 211  
        10.1 Introduction 211  
        10.2 Methodological Approach and Scenario Design 213  
           10.2.1 System Value 213  
           10.2.2 The IKARUS Energy System Model 214  
           10.2.3 Scenario Structure, Underlying Data and Basic Assumptions 215  
        10.3 Energy Economics Results 219  
           10.3.1 Energy and CO2 Balances 219  
              10.3.1.1 Primary Energy 219  
              10.3.1.2 End-Use Energy 219  
              10.3.1.3 Installed Net Capacity 221  
              10.3.1.4 Net Electricity Generation 222  
              10.3.1.5 Installed Net CCS Capacity and CCS Electricity Generation 223  
              10.3.1.6 CO2 Emissions 223  
              10.3.1.7 Comparison of CO2 Reduction Scenarios 225  
           10.3.2 Cost of Reduction Strategies 225  
              10.3.2.1 CO2 Reduction Costs 225  
              10.3.2.2 CCS System Value 227  
        10.4 Summary and Conclusions 228  
        References 229  
     Chapter 11: Public Acceptance 231  
        11.1 Introduction 231  
        11.2 Public Acceptance of CCS as a Subject of Research 232  
           11.2.1 Definition and Delimitation of the Subject of Research 232  
           11.2.2 Methods of CCS Acceptance Research 234  
           11.2.3 Key Findings of CCS Acceptance Research 237  
        11.3 Public Acceptance of CCS in Germany 242  
           11.3.1 Awareness and Knowledge of CCS 243  
           11.3.2 Initial Attitudes Towards CCS 246  
           11.3.3 Perception of the Risks and Benefits of CCS 248  
           11.3.4 Factors Influencing Initial Attitudes Towards CCS 250  
        11.4 Summary and Conclusions 255  
        References 256  
  Part III: Framework for Energy and Climate Policy 262  
     Chapter 12: No CCS in Germany Despite the CCS Act? 263  
        12.1 Introduction 263  
        12.2 The EU Sets the Framework and the Deadlines 264  
        12.3 Political Parties Attempt a Balancing Act 267  
        12.4 The Federal States Have Conflicting Interests 270  
        12.5 Social Actors Fail to Find Agreement 274  
        12.6 The Legislative Process Is Tedious and Contentious 277  
        12.7 A Future for CCS? 285  
        References 288  
     Chapter 13: CCS Policy in the EU: Will It Pay Off or Do We Have to Go Back to Square One? 295  
        13.1 Introduction - Why Does the EU Need CCS? 295  
        13.2 CCS - A Cornerstone of the EU´s Integrated Climate and Energy Policy 297  
           13.2.1 Integrated Energy and Climate Change Package in 2007 - Determination of Strategic Orientation for CCS 297  
           13.2.2 Climate and Energy Package 2008 - Definition of Long-Term Prospects for CCS 300  
              13.2.2.1 EU Directive on Emissions Trading and EU Guidelines on State Aid for Environmental Protection 301  
              13.2.2.2 European Legal Framework for Carbon Storage 302  
        13.3 Funding of Research and Development 306  
        13.4 Support for the Demonstration of CCS: Instruments and Their Implementation 307  
           13.4.1 The European Energy Programme for Recovery 308  
           13.4.2 NER300 310  
        13.5 CCS in the EU - An Initial Assessment 312  
        References 314  
     Chapter 14: International Cooperation in Support of CCS 318  
        14.1 Introduction 318  
        14.2 International Cooperation: Priorities and Discussion 319  
           14.2.1 International Cooperation Supporting Competitiveness 320  
           14.2.2 International Cooperation Supporting the Demonstration of CCS Technologies 322  
           14.2.3 International Cooperation and Knowledge Sharing 328  
        14.3 Germany´s Role in International Collaboration 330  
        14.4 Summary and Outlook 331  
        References 332  
  Part IV: Conclusion 335  
     Chapter 15: Evaluation Index of Carbon Capture and Utilization: A German Perspective and Beyond 336  
        15.1 Introduction and Motivation 337  
        15.2 Key Conclusions of the Integrated Technology Evaluation 338  
           15.2.1 Challenges for Technology and Actors 339  
              15.2.1.1 Demonstration on an Industrial Scale and Commercial Availability 339  
              15.2.1.2 Environmental and Safety Requirements 340  
              15.2.1.3 Cost Efficiency and Economic Viability 341  
              15.2.1.4 Coordination of Energy and Climate Policy 343  
              15.2.1.5 Public Acceptance 346  
           15.2.2 The Big Picture: Where Do We Stand? 347  
        15.3 Possible Implications for Implementation in Europe 349  
        Appendix: Survey 351  
        References 352  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz