Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Experimental Research in Earthquake Engineering - EU-SERIES Concluding Workshop
  Großes Bild
 
Experimental Research in Earthquake Engineering - EU-SERIES Concluding Workshop
von: Fabio Taucer, Roberta Apostolska
Springer-Verlag, 2015
ISBN: 9783319101361
624 Seiten, Download: 50559 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 6  
  In Memory of Prof Roy Severn 8  
  Acknowledgment 11  
  Contents 12  
  Contributors 17  
  Chapter-1 26  
     The George E. Brown, Jr., Network for Earthquake Engineering Simulation (NEES): Reducing the Impact of EQs and Tsunamis 26  
        1.1 Introduction 26  
        1.2 Research Accomplishments 27  
        1.3 NEES Cyberinfratructure and the NEEShub 30  
        1.4 International Collaborations 32  
        References 34  
  Chapter-2 35  
     A Faceted Lightweight Ontology for Earthquake Engineering Research Projects and Experiments 35  
        2.1 Introduction 35  
        2.2 Approach 36  
        2.3 Ontology Development 37  
        2.4 Ontology Representation 38  
           2.4.1 RDF 38  
           2.4.2 OWL 39  
        2.5 Existing Ontology/Thesaurus 39  
           2.5.1 WordNet 39  
           2.5.2 NEES Thesaurus 39  
        2.6 Ontology Integration 40  
        2.7 Experimental Set-Up 40  
        2.8 Results 41  
        2.9 Related Work 43  
        2.10 Conclusion 43  
        References 43  
  Chapter-3 44  
     The SERIES Virtual Database: Architecture and Implementation 44  
        3.1 Introduction 44  
        3.2 Architecture of the Virtual Database 45  
           3.2.1 Characteristics of the SERIES Virtual Database 45  
           3.2.2 Services Provided by the Nodes 47  
           3.2.3 Communication Between the Nodes and the Central Site 47  
           3.2.4 Large Files Download 48  
        3.3 Implementation of the Virtual Database 49  
           3.3.1 The Node 49  
           3.3.2 The Central Site 50  
        3.4 Security 51  
        3.5 Conclusions 52  
        References 53  
  Chapter-4 54  
     The SERIES Virtual Database: Exchange Data Format and Local/Central Databases 54  
        4.1 Introduction 54  
        4.2 The Exchange Data Format 55  
        4.3 Local Site Management of SERIES Virtual Database 58  
           4.3.1 Local Data Processing and Data Import Platform (DIP) 59  
           4.3.2 GUIDE Interface 63  
        4.4 SERIES Virtual Database for an External User 64  
           4.4.1 SERIES Virtual Database Working Principle 64  
           4.4.2 The Data Access Portal 66  
        4.5 Conclusions 70  
        References 71  
  Chapter-5 72  
     Qualification of Seismic Research Testing Facilities in Europe 72  
        5.1 Introduction 72  
           5.1.1 Why the Qualification? 72  
           5.1.2 The SERIES Project 74  
           5.1.3 NA2 Networking Activity—Qualification of Research Infrastructures 75  
              5.1.3.1 General Description of the Activity 75  
              5.1.3.2 Task NA2.1: Evaluation and Impact of Qualification of Experimental Facilities in Europe 76  
              5.1.3.3 Task NA2.2: Assessment of Testing Procedures and Standards Requirements 77  
              5.1.3.4 Task NA2.3: Criteria for Instrumentation and Equipment Management 77  
              5.1.3.5 Task NA2.4: Development and Implementation of a Common Protocol for Qualification 77  
        5.2 Acknowledgement of the European Situation 79  
           5.2.1 Introduction 79  
        5.3 The Common Protocol 81  
           5.3.1 The Road Map 81  
           5.3.2 The Draft Common Protocol Implementation 82  
           5.3.3 The Final Version of the Common Protocol 83  
        5.4 Conclusions 85  
           5.4.1 General Requirements 85  
           5.4.2 Specific Technical Requirements 85  
           5.4.3 European Standard Development 86  
        References 86  
  Chapter-6 88  
     Towards Faster Computations and Accurate Execution of Real-Time Hybrid Simulation 88  
        6.1 Introduction 88  
        6.2 Development I: Standalone RTHS System 90  
        6.3 Development II: An Efficient Equation Solver 92  
        6.4 Development III: TVC Implementation 95  
        6.5 Closure 102  
        References 102  
  Chapter-7 105  
     Pseudo-Dynamic Testing Based on Non-linear Dynamic Substructuring of a Reinforced Concrete Bridge 105  
        7.1 Introduction 105  
        7.2 Main Characteristics of Hybrid Simulations 106  
        7.3 The Reference OpenSEES FE Model 108  
        7.4 State Space Reduction of the RM 110  
           7.4.1 Nonlinear Dynamic Substructuring of Piers 111  
           7.4.2 Nonlinear Dynamic Substructuring of Isolator Elements 114  
        7.5 Validation of the Reduced Model of the Bridge 115  
        7.6 Simulation of a Consistent Degradation of the Bridge 117  
        7.7 Conclusions 118  
        References 119  
  Chapter-8 121  
     Geographically Distributed Continuous Hybrid Simulation Tests Using Shaking Tables 121  
        8.1 Introduction 121  
        8.2 Dorka’s Substructure Algorithm 122  
           8.2.1 Sub-Stepping 123  
           8.2.2 Error Force Compensation 124  
           8.2.3 Adaptation of the Algorithm for Multiple Testing Sites 124  
           8.2.4 Actuator Control 126  
        8.3 Continuous Time-Scaled Geographically Distributed Tests with Non-Linear Experimental Substructures 126  
           8.3.1 Description of the Test Set-Up 126  
           8.3.2 The Friction Device UHYDE-fbr 127  
           8.3.3 Numerical Models 129  
           8.3.4 Continuous Geographically Distributed Tests Using OpenFresco and NSEP Protocol 130  
              8.3.4.1 Validation of the Actuator Control with HYSTEC 131  
              8.3.4.2 Continuous Time-Scaled Continuous Tests 131  
        8.4 Large Numerical Models in Continuous Hybrid Simulation 134  
        8.5 Conclusions 135  
        References 137  
  Chapter-9 139  
     Hybrid Simulations of a Piping System Based on Model Reduction Techniques 139  
        9.1 Introduction 139  
        9.2 Main Characteristics and FE Analysis of the Piping System Under Investigation 140  
           9.2.1 General Dimensions 140  
           9.2.2 FE Modelling and Modal Analysis 141  
           9.2.3 Selection of Input Earthquake Loading 142  
        9.3 Substructuring and System of Equations of Motion 143  
           9.3.1 Substructuring 143  
           9.3.2 System of Equations of Motion 144  
        9.4 Model Reduction of Physical Substructure and Earthquake Forces 145  
           9.4.1 SEREP Reduction 145  
           9.4.2 Craig–Bampton Reduction 146  
        9.5 Integration Schemes and Hardware-Software Architecture 147  
           9.5.1 Integration Methods 147  
              9.5.1.1 The LSRT2 Method 147  
           9.5.2 Modified Generalized-? Method 148  
           9.5.3 Modification of the NS and Delay Compensation for RTs 148  
           9.5.4 Hardware-Software Architecture 149  
        9.6 Test Program and Experimental Set-Up 150  
        9.7 Main Experimental Results 151  
        9.8 Conclusions 153  
        References 153  
  Chapter-10 155  
     A Support Platform for Distributed Hybrid Testing 155  
        10.1 Introduction 155  
        10.2 The Celestina Framework 156  
           10.2.1 Networking Services 158  
           10.2.2 Definition Services 159  
           10.2.3 Testing Services 159  
           10.2.4 Services Implementation in the Nodes 160  
        10.3 A First Celestina Implementation 160  
        10.4 Conclusions 162  
        References 162  
  Chapter-11 163  
     Substructuring for Soil Structure Interaction Using a Shaking Table 163  
        11.1 Introduction 163  
        11.2 Benchmark SSI test 164  
           11.2.1 Experimental Components 164  
           11.2.2 Experiment 166  
        11.3 RTDS Test Method 167  
           11.3.1 Control Strategy 169  
              11.3.1.1 Proprietary Shaking Table Control 169  
              11.3.1.2 Delay Compensation 169  
              11.3.1.3 Full State Control via Simulation 171  
           11.3.2 RTDS for SSI 172  
        11.4 RTDH Test Method 175  
           11.4.1 Generalised Hybrid Modelling 177  
           11.4.2 Hybrid Simulation of the Benchmark 178  
        11.5 Summary 179  
        References 180  
  Chapter-12 181  
     On the Control of Shaking Tables in Acceleration Mode: An Adaptive Signal Processing Framework 181  
        12.1 Introduction 181  
        12.2 Description of the Method 182  
           12.2.1 Adaptive Identification 183  
              12.2.1.1 Delay Estimation 184  
           12.2.2 Adaptive Inverse Identification 186  
        12.3 Application 187  
        12.4 Conclusion 193  
        References 194  
  Chapter-13 195  
     Refined and Simplified Numerical Models of an Isolated Old Highway Bridge for PsD Testing 195  
        13.1 Introduction 195  
        13.2 Description of the Case Study 196  
        13.3 Development of a Refined Nonlinear Model in OpenSEES 197  
           13.3.1 Non-Linear Phenomena in the As-Built System 197  
           13.3.2 The FE Model of the “As Built” Viaduct 198  
              13.3.2.1 Strain Penetration Effect of Plain Steel Bars 198  
              13.3.2.2 Modeling of Non-Linear Shear Behaviour 199  
           13.3.3 The FE Model of the “Isolated” Viaduct 200  
              13.3.3.1 Non Linear Response of Isolators 201  
        13.4 Earthquake Response of the Bridge Structure 202  
           13.4.1 Performance Criteria 202  
           13.4.2 Earthquake Record Selection 203  
           13.4.3 Modal Analysis of the Viaduct 205  
        13.5 Numerical Analysis of the As-Built Model 206  
           13.5.1 Simulation of the Response for SLS 206  
           13.5.2 Simulation of the Seismic Test for ULS 206  
        13.6 Numerical Analysis of the Isolated Case 211  
           13.6.1 Simulation of the Response for Serviceability Limit State 211  
           13.6.2 Simulation of the Seismic Test for the Ultimate Limit State 212  
        13.7 Dynamic Substructuring of the OpenSEES FE Model of the Viaduct for PsD Testing Purposes 214  
        13.8 Conclusions 217  
        References 219  
  Chapter-14 221  
     Assessment of the Seismic Behaviour of a Retrofitted Old R.C. Highway Bridge Through PsD Testing 221  
        14.1 Introduction 221  
        14.2 Description of the Case Study 223  
        14.3 Pseudo-Dynamic Test Design 224  
           14.3.1 Testing Methods 224  
           14.3.2 Tests Specimens 226  
           14.3.3 Test Rig Configuration 226  
           14.3.4 Numerical Models of the Viaduct 228  
           14.3.5 Selection of Earthquake Input 231  
           14.3.6 Testing Program 231  
        14.4 Discussion of the Experimental Results 233  
           14.4.1 Cyclic Characterization of the FPS Isolator 234  
              14.4.1.1 Cyclic Tests Procedure 234  
              14.4.1.2 Tests for Different Cycling Velocities and Amplitudes 234  
           14.4.2 Static Characterization of the Specimens 235  
           14.4.3 Test Results on the Entire Viaduct 236  
              14.4.3.1 Test Results on the Non-Isolated Viaduct 236  
              14.4.3.2 Test Results on the Isolated Viaduct 241  
        14.5 Conclusions 247  
        References 248  
  Chapter-15 250  
     Full-scale Testing of Modern Unreinforced Thermal Insulation Clay Block Masonry Houses 250  
        15.1 Introduction 250  
        15.2 Experimental Setup 251  
           15.2.1 Mock-up Idealization and Geometry 251  
           15.2.2 Steel Foundations 253  
           15.2.3 Construction 253  
           15.2.4 Steel Ties 254  
           15.2.5 Material Parameters 254  
           15.2.6 Seismic Input Time-Histories 255  
           15.2.7 Instrumentation Plan 256  
           15.2.8 Testing Procedure 257  
        15.3 Preliminary Test Results 259  
           15.3.1 Qualitative Observations and Collapse Modes 259  
           15.3.2 Dynamic Characterization 261  
           15.3.3 Seismic Response 263  
        15.4 Conclusions 265  
        References 266  
  Chapter-16 268  
     Assessment of Innovative Solutions for Non-Load Bearing Masonry Enclosures 268  
        16.1 Introduction 268  
        16.2 Building Model Tests 269  
           16.2.1 Building Specimen and Test Setup 269  
           16.2.2 Input Signal and Test Sequence 273  
           16.2.3 Results and Discussion 274  
              16.2.3.1 Overall Response and Damage Evolution 274  
              16.2.3.2 Evolution of Modal Properties 277  
              16.2.3.3 Displacement Demand 280  
              16.2.3.4 Comparison with Previous Tests 281  
        16.3 Wall Panels Tests 283  
           16.3.1 Wall Panels Specimens and Test Setup 283  
           16.3.2 Input Signal and Test Sequence 286  
        16.4 Conclusions 287  
        References 288  
  Chapter-17 289  
     Seismic Behaviour of Thin-Bed Layered Unreinforced Clay Masonry Frames with T- or L-Shaped Piers 289  
        17.1 Introduction 289  
        17.2 Description of the Tested Specimens 290  
           17.2.1 Mechanical and Geometrical Characteristics of the Units 290  
           17.2.2 Description of the Specimens 291  
           17.2.3 Preliminary Assessment Design 293  
        17.3 Test Description 294  
           17.3.1 Axis Convention 294  
           17.3.2 Instrumentation of the Specimens 296  
           17.3.3 Testing Procedure 296  
           17.3.4 Excitation Waveforms for Seismic Tests 297  
        17.4 Test Results 299  
           17.4.1 Qualitative Observations 299  
           17.4.2 Natural Frequencies Identification 302  
           17.4.3 Modal Shapes 306  
           17.4.4 Seismic Behaviour 308  
        17.5 Conclusions 311  
        References 312  
  Chapter-18 314  
     Shake Table Testing of a Half-Scaled RC-URM Wall Structure 314  
        18.1 Introduction 314  
        18.2 Test Unit 315  
        18.3 Tests Conducted at EPFL in Preparation of the Shake Table Test 317  
           18.3.1 Instrumentation 319  
           18.3.2 Input Ground Motion 320  
           18.3.3 Shake Table Test 320  
        18.4 Conclusions 324  
        References 325  
  Chapter-19 326  
     Experimental and Numerical Investigation of Torsionally Irregular RC Shear Wall Buildings with Rutherma Breakers 326  
        19.1 Introduction 326  
        19.2 Description of ENISTAT Specimen 327  
           19.2.1 Geometry 327  
           19.2.2 Design of Specimen 329  
           19.2.3 Thermal Break Elements 329  
           19.2.4 Construction of the Specimen 329  
        19.3 Test Set-Up and Sequence 331  
           19.3.1 Test Set-Up 331  
           19.3.2 Instrumentation 331  
           19.3.3 Test Sequence 334  
        19.4 Results and Observations 335  
           19.4.1 Test Results 335  
           19.4.2 Damage Observations 339  
        19.5 Conclusions 343  
        References 344  
  Chapter-20 345  
     Assessment of the Seismic Response of Concentrically-Braced Steel Frames 345  
        20.1 Introduction 345  
        20.2 Experimental Aims and Methodology 346  
           20.2.1 Research Objectives 346  
           20.2.2 Methodology 347  
           20.2.3 Shake Table Experimental Programme 348  
        20.3 Test Frame and Specimens 351  
           20.3.1 Test Frame 351  
           20.3.2 Brace-Gusset Plate Specimens 353  
        20.4 Experimental Results 355  
           20.4.1 Frame Stiffness 357  
           20.4.2 Frame Drift and Brace Ductility 358  
        20.5 Conclusions 361  
        References 361  
  Chapter-21 363  
     Shaking Table Test Design to Evaluate Earthquake Capacity of a 3-Storey Building Specimen Composed of Cast-In-Situ Concrete Walls 363  
        21.1 Introduction 363  
        21.2 The Construction System 364  
           21.2.1 The Modular Panels 364  
           21.2.2 The Structural System Obtained and Its Features 365  
        21.3 Shaking Table Test: Design of the Structure 366  
           21.3.1 Comparison Between Demand Due To 1 g Spectral Acceleration and Capacity 367  
           21.3.2 Synthesis of the Predicted Behaviour 368  
           21.3.3 Transportation Phases 369  
        21.4 Instrumentation 370  
        21.5 Shaking-Table Tests 370  
           21.5.1 The Reference Seismic Input and the Test Program 370  
           21.5.2 Results 371  
              21.5.2.1 Experimental Frequencies 371  
              21.5.2.2 Cracking Pattern 372  
              21.5.2.3 Overstrengths 373  
        21.6 Conclusions 374  
        References 375  
  Chapter-22 377  
     High-Performance Composite-Reinforced Earthquake Resistant Buildings with Self-Aligning Capabilities 377  
        22.1 Introduction 377  
        22.2 Rigid BTC with Long Self-Tapping Screws and Beech Blocks 379  
        22.3 One Story Mock-Up 380  
        22.4 Frictional BTC 383  
        22.5 Scaled Three-Story Frame 386  
        22.6 Conclusion 389  
        References 390  
  Chapter-23 391  
     Experimental Study on Seismic Performance of Precast Concrete Shear Wall with Joint Connecting Beam Under Cyclic Loadings 391  
        23.1 Introduction 391  
        23.2 Experimental Programme 392  
           23.2.1 Specimen Design 392  
           23.2.2 Measurement and Test Procedure 394  
        23.3 Test Results 395  
           23.3.1 Overview 395  
           23.3.2 Hysteresis Behavior and Skeleton Curve 395  
           23.3.3 Lateral Strength 398  
           23.3.4 Ductility Evaluation 399  
           23.3.5 Strain Distribution of Reinforcements 400  
           23.3.6 Energy Dissipation 401  
           23.3.7 Stiffness Degradation 402  
        23.4 Conclusions 403  
        References 403  
  Chapter-24 405  
     The Importance of connections in Seismic Regions: Full-Scale Testing of a 3-Storey Precast Concrete Building 405  
        24.1 Introduction 405  
        24.2 The Mock Up 405  
        24.3 Testing Programme 409  
        24.4 Results 411  
           24.4.1 Prototype 1 411  
           24.4.2 Prototype 2 412  
           24.4.3 Prototype 3 414  
           24.4.4 Prototype 4 415  
        24.5 Modal Decomposition of Prototype’s Response 418  
        24.6 Conclusions 419  
        References 420  
  Chapter-25 422  
     Caisson Foundations Subjected to Seismic Faulting: Reduced-Scale Physical Modeling 422  
        25.1 Introduction 422  
        25.2 Physical Modeling Methodology 423  
           25.2.1 Problem Definition 423  
           25.2.2 Experimental Setup 425  
           25.2.3 Model Preparation and Instrumentation 426  
        25.3 Normal Faulting 427  
           25.3.1 Free-Field Normal Faulting 427  
           25.3.2 Fault Rupture–Caisson Interaction: s/B?=?0.16 428  
           25.3.3 Fault Rupture–Caisson Interaction: s/B?=?0.8 429  
        25.4 Reverse Faulting 429  
           25.4.1 Free-Field Reverse Faulting 429  
           25.4.2 Fault Rupture–Caisson Interaction: s/B?=???0.04 431  
           25.4.3 Fault Rupture–Caisson Interaction: s/B?=?0.66 433  
        25.5 Conclusions 435  
        References 436  
  Chapter-26 439  
     Development of New Infinite Element for Numerical Simulation of Wave Propagation in Soil Media 439  
        26.1 Introduction 439  
        26.2 Governing Equations of the Newly Developed Infinite Elements 441  
        26.3 Verification of the Infinite Element 444  
           26.3.1 Wave Propagation—One Dimensional Case 444  
           26.3.2 Wave Propagation—Two Dimensional Case 447  
           26.3.3 Soil Layer Simulation 448  
        26.4 Conclusion 451  
        References 451  
  Chapter-27 453  
     Analysis of the Dynamic Behaviour of Squat Silos Containing Grain-like Material Subjected to Shaking Table Tests—ASESGRAM Final Report 453  
        27.1 Introduction 453  
        27.2 Test Set-up 454  
           27.2.1 The Specimen: Geometry and Materials 454  
           27.2.2 The Test Instrumentation 457  
           27.2.3 The Test Sessions 457  
           27.2.4 The Test Input 458  
        27.3 Experimental Results 459  
           27.3.1 Frequency 459  
           27.3.2 Compaction of the Ensiled Material 460  
           27.3.3 Acceleration Sinusoidal Input 462  
           27.3.4 Acceleration Earthquake Input 463  
           27.3.5 Vertical Strains 463  
           27.3.6 Horizontal Strains 466  
           27.3.7 Change in the Physical Behaviour/Response for Increasing Peak Table Acceleration 467  
           27.3.8 Vertical and Horizontal Inputs in Phase 467  
           27.3.9 The Influence of the Wall-Grain Friction Coefficient 469  
           27.3.10 Bending Moments at the Base 469  
        27.4 Conclusions 472  
        References 473  
  Chapter-28 474  
     Multi-Building Interactions and Site-City Effect: An Idealized Experimental Model 474  
        28.1 Introduction 474  
        28.2 Theoretical Model for Soil-City Interactions: The City-Impedance Analysis 475  
           28.2.1 Homogenization of the City into a Surface Impedance 475  
           28.2.2 Features of the Resonant City-Impedance 476  
           28.2.3 Application to the Case of a City Lying on a Layer 478  
        28.3 Numerical Model for Soil-City Interactions: Hybrid BEM-FEM Analysis 480  
           28.3.1 Model for the Layer and the Oscillators 480  
           28.3.2 Brief Description of the Numerical Methodology 481  
        28.4 Design, Instrumentation and Experiment 482  
           28.4.1 Design of the Layer 482  
           28.4.2 Design of the “City” 483  
           28.4.3 Instrumentation 484  
           28.4.4 Experiment 485  
        28.5 Experimental-Analytical-Numerical Comparisons 485  
           28.5.1 Effects of Soil-City Interactions in Frequency Domain 485  
           28.5.2 Effects in Time Domain: Longer Coda and Beatings 486  
           28.5.3 Mode Shapes 487  
           28.5.4 Depolarization Effect 488  
        28.6 Conclusion 489  
        References 490  
  Chapter-29 492  
     Centrifuge Modeling of Dynamic Behavior of Box Shaped Underground Structures in Sand 492  
        29.1 Introduction 492  
        29.2 Centrifuge Model Tests 494  
           29.2.1 Centrifuge Test System 494  
              29.2.1.1 Earthquake Simulator 495  
              29.2.1.2 Soil Container 495  
              29.2.1.3 Data Acquisition System 496  
              29.2.1.4 Accelerometers, Transducers & Strain Gauges 496  
           29.2.2 Reduction Scaling & Scaling Effects 497  
           29.2.3 Physical Properties of Sand 498  
           29.2.4 Preparation of Model Ground 498  
           29.2.5 Design of Culvert Models 499  
           29.2.6 Instrumentation 500  
           29.2.7 Testing Program 502  
        29.3 Results of Centrifuge Tests 502  
           29.3.1 Maximum Accelerations Along the Soil Profile 502  
           29.3.2 Culvert Deformations 504  
        29.4 Summary and Conclusions 505  
        References 506  
  Chapter-30 507  
     Dynamic Response of Shallow Rectangular Tunnels in Sand by Centrifuge Testing 507  
        30.1 Introduction 507  
        30.2 Dynamic Centrifuge Tests 508  
           30.2.1 IFSTTAR Centrifuge Facility 508  
           30.2.2 Properties of the Soil-Tunnel System 509  
           30.2.3 Model Preparation 510  
           30.2.4 Model Layout—Instrumentation 511  
              30.2.4.1 “Fork” Recording Device 511  
              30.2.4.2 Diagonal Extensometers 513  
           30.2.5 Centrifuge Testing Program 513  
           30.2.6 Experimental Procedure 513  
        30.3 Interpretation of Experimental Data 514  
           30.3.1 Free-Field Horizontal Acceleration 515  
           30.3.2 Experimental Shear Wave Propagation Velocity 516  
           30.3.3 Tunnel Deformations 517  
        30.4 Conclusions 520  
        References 521  
  Chapter-31 522  
     Centrifuge Modelling of the Dynamic Behavior of Square Tunnels in Sand 522  
        31.1 Introduction 522  
        31.2 Dynamic Centrifuge Tests 523  
        31.3 Experimental Results 527  
           31.3.1 Air Hammer Testing 527  
           31.3.2 Static Response 528  
           31.3.3 Dynamic Response 528  
              31.3.3.1 Acceleration 528  
              31.3.3.2 Earth Pressures 530  
              31.3.3.3 Bending Moment-Time Histories 531  
              31.3.3.4 Axial Force-Time Histories 532  
           31.3.4 Flexible Tunnel Collapse Mechanism 532  
        31.4 Conclusions 535  
        References 536  
  Chapter-32 537  
     FLIQ: Experimental Verification of Shallow Foundation Performance Under Earthquake-Induced Liquefaction 537  
        32.1 Introduction 537  
        32.2 Centrifuge Experiments 538  
           32.2.1 Experimental Set-Up and Facilities 538  
           32.2.2 Model Preparation 541  
           32.2.3 Testing Procedures 544  
        32.3 Experimental Results 546  
           32.3.1 Dynamic Loading 546  
           32.3.2 Post-Shaking Behavior 549  
        32.4 Conclusions 551  
        References 552  
  Chapter-33 555  
     Centrifuge Modelling of Retaining Walls Embedded in Saturated Sand Under Seismic Actions 555  
        33.1 Introduction 555  
        33.2 Experimental Setup and Model Preparation 556  
           33.2.1 Seismic Actuator and Dynamic Container 557  
           33.2.2 Materials and Saturation Procedure 558  
           33.2.3 Instrumentation 559  
        33.3 Testing Procedures 560  
        33.4 Main Results 563  
           33.4.1 Accelerations 564  
           33.4.2 Pore Pressures 564  
           33.4.3 Displacements 567  
           33.4.4 Bending Moments 570  
        33.5 Conclusions 572  
        References 573  
  Chapter-34 575  
     Experimental and Numerical Investigations of Nonlinearity in Soils Using Advanced Laboratory-Scaled Models (ENINALS Project): From a Site-Test to a Centrifuge Model 575  
        34.1 Introduction 575  
        34.2 The Rome Historical Centre Case Study 576  
        34.3 Seismic Input 577  
           34.3.1 Natural Reference Input 577  
           34.3.2 Cyclic Mono-Frequency Input 579  
           34.3.3 LEMA_DES Multi-Frequency Input 579  
        34.4 Centrifuge Modelling 581  
           34.4.1 Experimental Project 581  
           34.4.2 Experimental Device 581  
           34.4.3 Experimental Setup 582  
              34.4.3.1 Preparation of the Sample Boxes: Soil Columns #1 and #2 582  
              34.4.3.2 Preparation of the Sample Boxes: Soil Columns #3 and #4 583  
           34.4.4 Seismic Signals Analysis 584  
              34.4.4.1 Signal Reproduction 584  
              34.4.4.2 Signal Transmission 585  
        34.5 Conclusions 587  
        References 589  
  Chapter-35 591  
     Damping Estimation from Seismic Records 591  
        35.1 Introduction 591  
        35.2 The Viscous Model 592  
           35.2.1 Classical-Damping 592  
           35.2.2 Non-Classical Damping 593  
        35.3 Damping Identification 594  
        35.4 Uncertainty in Damping Estimation 595  
        35.5 Regression Analysis 597  
           35.5.1 Functional Form 598  
        35.6 Results 598  
        35.7 Discussion 601  
        35.8 Concluding Remarks 602  
           APPENDIX I—On the accuracy of the classical damping premise 602  
           Derivation 603  
        References 605  
  Chapter-36 606  
     Development of Wireless Sensors for Shake Table and Full Scale Testing and Health Monitoring of Structures 606  
        36.1 Introduction 606  
        36.2 Development of Wireless Sensors at IZIIS 608  
           36.2.1 MIMRACS Wireless Sensor 608  
              36.2.1.1 Hardware Components and Technical Specification 608  
              36.2.1.2 Software 610  
              36.2.1.3 Device Operation 614  
              36.2.1.4 Preliminary Verification Tests 616  
           36.2.2 SAWARS Wireless Sensor 618  
        36.3 Conclusion 619  
        References 619  
  Index 621  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz