Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Energy Performance of Buildings - Energy Efficiency and Built Environment in Temperate Climates
  Großes Bild
 
Energy Performance of Buildings - Energy Efficiency and Built Environment in Temperate Climates
von: Sofia-Natalia Boemi, Olatz Irulegi, Mattheos Santamouris
Springer-Verlag, 2015
ISBN: 9783319208312
540 Seiten, Download: 21544 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 5  
  Contents 7  
  1 The Built Environment and Its Policies 10  
     Abstract 10  
     1.1 Buildings Throughout Time 10  
     1.2 Energy in Buildings: From Sufficiency to Efficiency 12  
     1.3 Requirements for Future Buildings 14  
     1.4 Sustainable Buildings 16  
     1.5 The Built Environment and Its Policies: the Case of the Mediterranean Basin 22  
  Part I Challenges and Priorities for a Sustainable Built Environment 25  
  2 Climatic Change in the Built Environment in Temperate Climates with Emphasis on the Mediterranean Area 26  
     Abstract 26  
     2.1 Introduction 26  
     2.2 The Multi-Fold Relationship Between Cities and Climate Change 27  
     2.3 Urbanization in Europe 29  
     2.4 Climate Change in Europe 30  
     2.5 Climate in the Mediterranean Area 31  
     2.6 Climate Change in the Mediterranean Area 32  
     2.7 Impacts of Climate Change on Cities 35  
     2.8 Conclusion 39  
     References 39  
  3 The Role of Buildings in Energy Systems 44  
     Abstract 44  
     3.1 Sustainability and Construction Activity 45  
     3.2 Energy Consumption in Buildings 47  
        3.2.1 Overall Energy Consumption in the Building Sector 47  
        3.2.2 Energy Consumption Per Fuel Type and Renewable Energy Sources (RES) 49  
     3.3 Means of Reducing Energy Consumption 50  
        3.3.1 Energy Efficiency 50  
     3.4 Embodied Energy of Structural Materials and Components 53  
     3.5 Assessment Methods 56  
        3.5.1 Introduction 56  
        3.5.2 Environmental Assessment of Structural Products and Processes 61  
        3.5.3 Environmental Assessment Methods for Buildings and Construction Works 62  
           3.5.3.1 BREEAM (BRE Environmental Assessment Method) 63  
           3.5.3.2 SBTOOL (Sustainable Buildings Tool) 64  
           3.5.3.3 Green Globes 64  
           3.5.3.4 LEED® (Leadership in Energy and Environmental Design) 65  
           3.5.3.5 CASBEE (Comprehensive Assessment System for Building Environmental Efficiency) 66  
     3.6 Discussion 66  
     References 68  
  4 Challenges and Priorities for a Sustainable Built Environment in Southern Europe—The Impact of Energy Efficiency Measures and Renewable Energies on Employment 70  
     Abstract 70  
     4.1 Introduction 70  
     4.2 The Built Environment—Defining the Challenges and Priorities in Southern Europe 72  
        4.2.1 Fighting Economic and Social Stratification Discrimination Through Energy Investment 74  
     4.3 Conclusions 79  
     References 83  
  5 Indicators for Buildings’ Energy Performance 85  
     Abstract 85  
     5.1 Introduction 85  
        5.1.1 Background 87  
           5.1.1.1 Buildings’ Energy Analysis 87  
        5.1.2 European Landscape 88  
     5.2 The Resulting Taxonomy 90  
     5.3 Decision-Making Framework 93  
     5.4 Findings 94  
     5.5 Discussion 96  
     References 97  
  6 Life Cycle Versus Carbon Footprint Analysis for Construction Materials 100  
     Abstract 100  
     6.1 Introduction 100  
     6.2 Methodological Approach 102  
     6.3 Results and Discussion 105  
     6.4 Conclusions 108  
     References 109  
  7 Economic Experiments Used for the Evaluation of Building Users’ Energy-Saving Behavior 112  
     Abstract 112  
     7.1 Introduction 113  
     7.2 Literature Review 114  
     7.3 Experimental Design 116  
     7.4 Results 119  
     7.5 Conclusions 124  
     7.6 Further Investigations 125  
     References 126  
  8 Technologies and Socio-economic Strategies to nZEB in the Building Stock of the Mediterranean Area 127  
     Abstract 127  
     8.1 Towards Nearly Zero Energy Urban Settings in the Mediterranean Climate 128  
        8.1.1 State of the Art and Crucial Issues in the Urban Environment of the Mediterranean Areas. A Case Study of the Athens Metropolitan Area (AMA) 128  
        8.1.2 Policy Background and Zero Energy Case Studies 130  
        8.1.3 Low Carbon Communities and Grass-Roots Initiatives in the Urban Environment 131  
     8.2 Towards “Nearly Zero Energy” and Socio-oriented Urban Settings in the Mediterranean Climate 132  
     8.3 Energy Retrofitting Scenarios of Existing Buildings to Achieve nZEBs: The Case Study of the Peristeri Workers’ Houses’ Urban Compound 134  
        8.3.1 Energy Performance Evaluation in the Buildings as Built 138  
        8.3.2 Energy Retrofitting Scenarios of Existing Buildings in the Peristeri Urban Compound 155  
        8.3.3 Cost-Benefit Analysis 155  
        8.3.4 First Conclusions on the Peristeri Urban Compound and Further Design Scenarios 156  
        8.3.5 Energy and Cost Benefits of Volumetric Addition in Energy Retrofitting Actions 156  
        8.3.6 Low Versus High Transformation Retrofitting Options Towards Near Zero Energy in Existing Buildings 159  
     8.4 Conclusions 161  
     References 164  
  Part II The Built Environment 168  
  9 Households: Trends and Perspectives 169  
     Abstract 169  
     9.1 Introduction 169  
     9.2 Analysis of Data in the Crisis Period 170  
        9.2.1 Household Energy Consumption 170  
        9.2.2 Population Change 174  
        9.2.3 Building Stock 175  
        9.2.4 Greenhouse Gas Emissions 179  
        9.2.5 Discussion of Data 180  
     9.3 Housing and Living Quality 184  
        9.3.1 Overcrowding Rate 184  
        9.3.2 Severe Housing Deprivation Rate 185  
        9.3.3 Housing Cost Overburden Rate 190  
     9.4 Energy Poverty 190  
        9.4.1 Inability to Keep Homes Adequately Warm 192  
        9.4.2 People Living in Dwellings with Poor Conditions 192  
        9.4.3 Difficulties Paying the Bills 197  
        9.4.4 Population Living in Uncomfortable Dwellings 197  
     9.5 Conclusions 201  
     References 203  
  10 Office BuildingsCommercial Buildings: Trends and Perspectives 205  
     Abstract 205  
     10.1 Introduction 205  
     10.2 The Zero Energy Buildings’ Perspectives in the Mediterranean Region 206  
     10.3 Office Buildings as ZEB in the Mediterranean Region 208  
        10.3.1 Office Building in Crete, Greece 209  
        10.3.2 Laboratory Building in Cyprus 210  
     10.4 Conclusions and Future Prospects 216  
     References 217  
  11 Energy Efficiency in Hospitals: Historical Development, Trends and Perspectives 219  
     Abstract 219  
     11.1 Introduction: On the Evolution of Hospital Buildings 219  
     11.2 On the Use of Energy in Hospitals 221  
     11.3 Thermal Comfort, Indoor Air Quality, and Hygiene 226  
     11.4 Improving Energy Efficiency and Reducing Energy Costs: Energy Optimization 227  
        11.4.1 Monitoring of Energy Efficiency 230  
        11.4.2 Analysis of Energy Consumption 230  
        11.4.3 Energy Optimization 230  
     11.5 Conclusions 233  
     References 234  
  12 The Hotel Industry: Current Situation and Its Steps Beyond Sustainability 236  
     Abstract 236  
     12.1 Introduction 236  
     12.2 An Overview of Energy Performance in Hotels 237  
        12.2.1 Tourism in Countries with Temperate Climates 239  
        12.2.2 Basic Figures for the Greek Sector 239  
     12.3 Features of the Hotel Industry in Countries with Temperate Climates 241  
     12.4 Beyond Energy: Hotels and Sustainability 246  
     12.5 Conclusions 247  
     References 248  
  13 Schools: Trends and Perspectives 252  
     Abstract 252  
     13.1 Introduction 252  
     13.2 Methodology 254  
     13.3 Schools’ Building Stock Data 255  
     13.4 Pilot Schools’ Comfort and Energy Performance Investigation 259  
        13.4.1 Indoor Environmental Conditions 260  
           13.4.1.1 Studies Comparing Thermal Comfort and Energy Efficiency 261  
     13.5 Field Measurements of Climatic Parameters in a Typical School Building 263  
     13.6 Energy Simulations and Upgrade Scenarios of a Typical School 265  
     13.7 Conclusions 267  
     References 268  
  Part III Building’s Design and Systems 270  
  14 New Challenges in Covering Buildings’ Thermal Load 271  
     Abstract 271  
     14.1 Introduction 271  
        14.1.1 Defining Building Energy Supply Technologies 273  
        14.1.2 Building Energy Supply Technologies in Temperate Climates 275  
        14.1.3 Building Energy Systems in Retrofitting 275  
     14.2 Shifting the Paradigm 276  
        14.2.1 The Zero Energy Building Agenda and the Regulatory Environment 276  
        14.2.2 The Smart Decarbonized Grid Landscape and the Connected Building 278  
        14.2.3 Thermal Comfort and Energy Supply 279  
     14.3 Energy Technologies for Building Supply 281  
        14.3.1 The Heat-Power Nexus (Interdependency of Electrical and Thermal Energy in the Built Environment) 282  
        14.3.2 Emerging Building Energy Systems 284  
           14.3.2.1 Microgeneration (or the Distributed Generation Narrative) 284  
           14.3.2.2 Heat Pumps 285  
           14.3.2.3 Solar Thermal Collectors 285  
           14.3.2.4 Energy Storage (Thermal) 286  
        14.3.3 Building Energy Management Systems 288  
     14.4 Envisioning the Building of the Future (Is the All-Electric Building the Future?) 289  
     References 289  
  15 Energy Technologies for Building Supply Systems: MCHP 291  
     Abstract 291  
     15.1 Introduction 291  
     15.2 Prime Mover Technologies and Market Survey 296  
        15.2.1 Reciprocating Internal Combustion Engines (ICE) 297  
        15.2.2 Reciprocating External Combustion Stirling Engines (SE) 300  
        15.2.3 Fuel Cells (FC) 302  
        15.2.4 Gas and Steam Micro-turbines (MT) 303  
        15.2.5 Photovoltaic Thermal (PVT) Generators 304  
     15.3 Operating Schemes 305  
     15.4 Regulatory Framework 310  
        15.4.1 Micro-cogeneration Testing Procedures 311  
        15.4.2 State of the Art: Experimental Results and Simulation Tools 312  
     15.5 ConclusionsDiscussion 314  
     References 315  
  16 The State of the Art for Technologies Used to Decrease Demand in Buildings: Thermal Energy Storage 319  
     Abstract 319  
     16.1 Introduction 319  
     16.2 Materials Used for TES in Buildings 320  
        16.2.1 Sensible Heat 321  
        16.2.2 Latent Heat 322  
        16.2.3 Thermochemical Reactions 325  
     16.3 Passive Technologies 326  
        16.3.1 Introduction 326  
        16.3.2 Sensible Passive Systems 326  
           16.3.2.1 Integration in Building Components 326  
        16.3.3 Latent Passive Systems 329  
           16.3.3.1 Integration in the Building 329  
           16.3.3.2 Environmental Impact 332  
     16.4 Active Systems 332  
        16.4.1 Introduction 332  
        16.4.2 Free-Cooling Systems 332  
        16.4.3 Building Integrated Active Systems 333  
           16.4.3.1 Integration of the TES Into the Core of the Building 334  
           16.4.3.2 Integration of the TES in External Façades 336  
           16.4.3.3 Integration of the TES in Suspended Ceilings and Ventilation Systems 337  
           16.4.3.4 Integration of the TES in the PV System 338  
           16.4.3.5 Integration of the TES in Water Tanks 338  
        16.4.4 Use of TES in Heat Pumps 339  
     16.5 Conclusions 341  
     References 342  
  17 Solar Thermal Systems 349  
     Abstract 349  
     17.1 Introduction 349  
        17.1.1 Solar Energy Collectors 350  
           17.1.1.1 Solar Water Heating Collectors 351  
           17.1.1.2 Flat-Plate Collector 351  
           17.1.1.3 Heat Pipe Evacuated Tube Collector 353  
           17.1.1.4 Water-in-Glass Evacuated Tube Collector 353  
        17.1.2 Solar Air Heating Collectors 354  
           17.1.2.1 Unglazed Solar Air Heating Collector 354  
           17.1.2.2 Glazed Solar Air Heating Collector 355  
        17.1.3 Solar Water Heating Systems 357  
        17.1.4 Forced Circulation SWHS 359  
        17.1.5 Thermosyphon SWHS 360  
     17.2 Solar Thermal Cooling Systems 361  
        17.2.1 Solar Absorption Cooling System 362  
        17.2.2 Solar Adsorption Cooling System 364  
        17.2.3 Solar Desiccant Cooling Systems 365  
        17.2.4 Solar Ejector Cooling System 365  
        17.2.5 Advantages and Disadvantages 366  
        17.2.6 Overview of Solar Cooling Systems 366  
        17.2.7 Solar Cooling System Costs 368  
     17.3 Solar Air Heating System 369  
        17.3.1 Solar Absorption Heat Pump System 370  
     17.4 Building Integrated Solar Thermal Systems 372  
        17.4.1 Façade Integrations 372  
        17.4.2 Roof Integrated Systems 373  
        17.4.3 Balconies and Walls 373  
     References 373  
  18 Solar Energy for Building Supply 376  
     Abstract 376  
     18.1 Introduction 376  
     18.2 PV Modules and Cells 377  
        18.2.1 Electricity Production 377  
        18.2.2 The Components 378  
        18.2.3 Dependency of Energy Generated on System Installation 380  
        18.2.4 Production 381  
        18.2.5 Integration of Solar Modules in Buildings 381  
     18.3 ?ypes of PV Cells 381  
        18.3.1 Types of PV Cells Depending on the Semiconductor Material 382  
        18.3.2 Types of PV Cells According to the Type of Junction 383  
        18.3.3 Types of PV Cells According to the Method of Manufacture 384  
        18.3.4 Types of PV Cells According to the Devices of the System that Utilizes Solar Radiation 384  
        18.3.5 Semitransparent Modules (Crystalline Glass-Glass Module) 385  
     18.4 I–V Curve and Losses 386  
        18.4.1 Characteristic I–V Curve of a PV Cell—Power Curve 386  
     18.5 Types of Building Integration 388  
     18.6 Conclusion 396  
     References 396  
  19 The State of the Art for Technologies Used to Decrease Demand in Buildings: Thermal Insulation 398  
     Abstract 398  
     19.1 Thermal Insulation Materials 398  
     19.2 Foamed Materials 399  
     19.3 Fibrous Materials 400  
     19.4 Construction Solutions 404  
        19.4.1 Vertical Building Elements 405  
        19.4.2 Horizontal Building Elements 407  
     19.5 Conclusions 413  
     Reference 413  
  20 Cool Materials 414  
     Abstract 414  
     20.1 Introduction 414  
     20.2 Construction Materials Under Solar Radiation 416  
        20.2.1 Construction and Building Solutions for Cool Applications 418  
     20.3 Cool Materials for Building Applications 420  
        20.3.1 White and Light-Colored Materials 420  
        20.3.2 Cool Colored Materials 421  
        20.3.3 Advanced Materials 423  
     20.4 Cool Materials for Urban Applications 424  
     20.5 Potentialities of Cool Materials Applications 426  
        20.5.1 Saving Energy with Cool Roofs 426  
        20.5.2 Mitigating the Urban Temperatures with Cool Materials 428  
     20.6 Cool Roofs Case Studies 429  
        20.6.1 Senior Recreation Building in Rome, Italy 429  
        20.6.2 OfficeSchool Building in Trapani, Sicily, Italy 430  
        20.6.3 School Building in Athens, Greece 432  
        20.6.4 School Building in Heraklion, Crete, Greece 432  
     Bibliography 433  
  21 Shading and Daylight Systems 436  
     Abstract 436  
     21.1 Introduction 436  
     21.2 Shading 444  
     21.3 Daylight Systems 449  
        21.3.1 Lightshelf 452  
        21.3.2 Blinds 453  
        21.3.3 Daylight Transporting Systems 459  
        21.3.4 Heliostat 462  
     References 464  
  22 The State of the Art for Technologies Used to Decrease Demand in Buildings: Electric Lighting 466  
     Abstract 466  
     22.1 Energy Consumption by Electric Lighting 466  
     22.2 Policies and Standards 468  
     22.3 Energy Performance Factors for Lighting Installations 469  
     22.4 Maintenance and Life Cycle 472  
     22.5 Comparison of Technologies 473  
        22.5.1 Lamps 473  
           22.5.1.1 LED Replacement Lamps 475  
        22.5.2 Luminaires 475  
        22.5.3 LED Luminaires 475  
        22.5.4 OLED Luminaires 476  
     22.6 Daylighting Utilization 477  
     22.7 Lighting Design 477  
     22.8 Conclusions 480  
     Reference 480  
  Part IV The Microclimatic Environment 481  
  23 Tools and Strategies for Microclimatic Analysis of the Built Environment 482  
     Abstract 482  
     23.1 Introduction 482  
     23.2 Köppen-Geiger Climate Classification 483  
     23.3 Orientation Analysis 485  
     23.4 Passive Design Strategies for Mediterranean Climate 486  
     23.5 Passive Design Strategies for Mediterranean Climate 488  
     23.6 Climograms—Case Study of Barcelona 489  
     23.7 Summary of Design Strategies for Mediterranean Cities 492  
     23.8 Passive Strategies for Winter 494  
     23.9 Conclusion 494  
     References 495  
  24 Microclimatic Improvement 496  
     Abstract 496  
     24.1 Introduction 497  
     24.2 Defining Microclimate 498  
        24.2.1 Properties of Mediterranean Climate 498  
        24.2.2 Meso-Scale Conditions 500  
           24.2.2.1 Topography 500  
           24.2.2.2 Wind 500  
           24.2.2.3 Bodies of Water 500  
           24.2.2.4 Vegetation 500  
           24.2.2.5 Artificial Elements 501  
        24.2.3 Main Physical Parameters on the Local Scale 501  
     24.3 Mediterranean Settlement and Microclimate 503  
     24.4 Strategies in Microclimatic Improvement 506  
        24.4.1 Building as Modifier of Microclimate (North America 1910–1948) 506  
        24.4.2 Sequences of Dampening Spaces (Andalusia 9th–14th Centuries) 508  
        24.4.3 Collaboration Between Construction and Microclimate (Corse 2011) 510  
        24.4.4 Social Spaces and Evapotranspiration (Castile 2004) 512  
        24.4.5 Blurring and Dematerialization (Southern France 1961 and 2003–2007) 513  
     24.5 Conclusions 517  
     References 518  
  25 Modelling and Bioclimatic Interventions in Outdoor Spaces 520  
     Abstract 520  
     25.1 Introduction 520  
     25.2 The Optimum Modelling Tool 522  
     25.3 Using Computational Fluid Dynamics in the Bioclimatic Design of Open Spaces in Two Greek Cities 523  
        25.3.1 Bioclimatic Thermal Problem 523  
        25.3.2 Bioclimatic Interventions 524  
        25.3.3 Model Verification 524  
        25.3.4 Comparison of the Mean Maximum Air Temperature 527  
        25.3.5 Comparison of the Mean Surface Temperatures 529  
     25.4 Urban Microclimatic Improvement Effects on Building Blocks’ Energy Consumption by the Use of Energy Simulation 531  
     25.5 The Optimum Modeling Scheme in Bioclimatic Design 533  
     25.6 Conclusions 534  
     References 535  
  Index 538  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz