Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Fundamentals of Mechanical Vibrations
  Großes Bild
 
Fundamentals of Mechanical Vibrations
von: Liang-Wu Cai
Wiley-ASME Press Series, 2016
ISBN: 9781119050230
480 Seiten, Download: 15891 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: A (einfacher Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Cover 1  
  Title Page 5  
  Copyright 6  
  Contents 7  
  Series Preface 11  
  Preface 13  
  Chapter 1 A Crash Course on Lagrangian Dynamics 17  
     1.1 Objectives 17  
     1.2 Concept of "Equation of Motion" 17  
     1.3 Generalized Coordinates 21  
     1.4 Admissible Variations 29  
     1.5 Degrees of Freedom 32  
     1.6 Virtual Work and Generalized Forces 33  
     1.7 Lagrangian 40  
     1.8 Lagrange's Equation 40  
     1.9 Procedure for Deriving Equation(s) of Motion 40  
     1.10 Worked Examples 41  
        1.10.1 Systems Containing Only Particles 41  
        1.10.2 Systems Containing Rigid Bodies 54  
     1.11 Linearization of Equations of Motion 73  
        1.11.1 Equilibrium Position(s) 74  
        1.11.2 Linearization 75  
        1.11.3 Observations and Further Discussions 78  
     1.12 Chapter Summary 79  
  Chapter 2 Vibrations of Single-DOF Systems 97  
     2.1 Objectives 97  
     2.2 Types of Vibration Analyses 97  
     2.3 Free Vibrations of Undamped System 99  
        2.3.1 General Solution for Homogeneous Differential Equation 99  
        2.3.2 Basic Vibration Terminologies 101  
        2.3.3 Determining Constants via Initial Conditions 103  
     2.4 Free Vibrations of Damped Systems 109  
     2.5 Using Normalized Equation of Motion 110  
        2.5.1 Normalization of Equation of Motion 110  
        2.5.2 Classification of Vibration Systems 111  
        2.5.3 Free Vibration of Underdamped Systems 112  
        2.5.4 Free Vibration of Critically Damped System 116  
        2.5.5 Free Vibration of Overdamped System 118  
     2.6 Forced Vibrations I: Steady-State Responses 124  
        2.6.1 Harmonic Loading 124  
        2.6.2 Mechanical Significance of Steady-State Solution 126  
        2.6.3 Other Examples of Harmonic Loading 131  
        2.6.4 General Periodic Loading 140  
     2.7 Forced Vibrations II: Transient Responses 149  
        2.7.1 Transient Response to Periodic Loading 150  
        2.7.2 General Loading: Direct Analytical Method 155  
        2.7.3 Laplace Transform Method 162  
        2.7.4 Decomposition Method 166  
        2.7.5 Convolution Integral Method 175  
     2.8 Chapter Summary 188  
        2.8.1 Free Vibrations of Single-DOF Systems 188  
        2.8.2 Steady-State Responses of Single-DOF Systems 189  
        2.8.3 Transient Responses of Single-DOF Systems 190  
  Chapter 3 Lumped-Parameter Modeling 202  
     3.1 Objectives 202  
     3.2 Modeling 202  
     3.3 Idealized Elements 203  
        3.3.1 Mass Elements 203  
        3.3.2 Spring Elements 204  
        3.3.3 Damping Elements 205  
     3.4 Lumped-Parameter Modeling of Simple Components and Structures 206  
        3.4.1 Equivalent Spring Constants 207  
        3.4.2 Equivalent Masses 220  
        3.4.3 Damping Models 228  
     3.5 Alternative Methods 234  
        3.5.1 Castigliano Method for Equivalent Spring Constants 234  
        3.5.2 Rayleigh-Ritz Method for Equivalent Masses 239  
        3.5.3 Rayleigh-Ritz Method for Equivalent Spring Constants 243  
        3.5.4 Rayleigh-Ritz Method for Natural Frequencies 246  
        3.5.5 Determining Lumped Parameters Through Experimental Measurements 247  
     3.6 Examples with Lumped-Parameter Models 249  
     3.7 Chapter Summary 268  
  Chapter 4 Vibrations of Multi-DOF Systems 285  
     4.1 Objectives 285  
     4.2 Matrix Equation of Motion 285  
     4.3 Modal Analysis: Natural Frequencies and Mode Shapes 289  
     4.4 Free Vibrations 300  
        4.4.1 Free Vibrations of Undamped Systems 300  
        4.4.2 Free Vibrations of Undamped Unconstrained Systems 309  
        4.4.3 Free Vibrations of Systems of Many DOFs 312  
     4.5 Eigenvalues and Eigenvectors 321  
        4.5.1 Standard Eigenvalue Problem 321  
        4.5.2 Generalized Eigenvalue Problem 322  
     4.6 Coupling, Decoupling, and Principal Coordinates 323  
        4.6.1 Types of Coupling 323  
        4.6.2 Principal Coordinates 323  
        4.6.3 Decoupling Method for Free-Vibration Analysis 326  
     4.7 Forced Vibrations I: Steady-State Responses 335  
     4.8 Forced Vibrations II: Transient Responses 344  
        4.8.1 Direct Analytical Method 344  
        4.8.2 Decoupling Method 347  
        4.8.3 Laplace Transform Method 363  
        4.8.4 Convolution Integral Method 365  
     4.9 Chapter Summary 373  
        4.9.1 Modal Analyses 373  
        4.9.2 Free Vibrations of Multi-DOF Systems 373  
        4.9.3 Steady-State Responses of Multi-DOF Systems 375  
        4.9.4 Transient Responses of Multi-DOF Systems 375  
     References 385  
  Chapter 5 Vibration Analyses Using Finite Element Method 386  
     5.1 Objectives 386  
     5.2 Introduction to Finite Element Method 386  
        5.2.1 Lagrangian Dynamics Formulation of FEM Model 387  
        5.2.2 Matrix Formulation 390  
     5.3 Finite Element Analyses of Beams 394  
        5.3.1 Formulation of Beam Element 395  
        5.3.2 Implementation Using MatLab 399  
        5.3.3 Generalization: Large-Scale Finite Element Simulations 408  
        5.3.4 Damping Models in Finite Element Modeling 410  
     5.4 Vibration Analyses Using SolidWorks 411  
        5.4.1 Introduction to SolidWorks Simulation 412  
        5.4.2 Static Analysis 414  
        5.4.3 Modal Analysis 431  
        5.4.4 Harmonic Vibration Analysis 435  
        5.4.5 Transient Vibration Analysis 441  
     5.5 Chapter Summary 444  
        5.5.1 Finite Element Formulation 444  
        5.5.2 Using Commercial Finite Element Analysis Software 445  
  Appendix A Review of Newtonian Dynamics 449  
     A.1 Kinematics 449  
        A.1.1 Kinematics of a Point or a Particle 449  
        A.1.2 Relative Motions 451  
        A.1.3 Kinematics of a Rigid Body 452  
     A.2 Kinetics 453  
        A.2.1 Newton-Euler Equations 453  
        A.2.2 Energy Principles 454  
        A.2.3 Momentum Principles 455  
  Appendix B A Primer on MatLab 456  
     B.1 Matrix Computations 456  
        B.1.1 Commands and Statements 456  
        B.1.2 Matrix Generation 457  
        B.1.3 Accessing Matrix Elements and Submatrices 458  
        B.1.4 Operators and Elementary Functions 460  
        B.1.5 Flow Controls 462  
        B.1.6 M-Files, Scripts, and Functions 465  
        B.1.7 Linear Algebra 468  
     B.2 Plotting 470  
        B.2.1 Two-Dimensional Curve Plots 470  
        B.2.2 Three-Dimensional Curve Plots 472  
        B.2.3 Three-Dimensional Surface Plots 473  
  Appendix C Tables of Laplace Transform 475  
     C.1 Properties of Laplace Transform 475  
     C.2 Function Transformations 475  
  Index 477  
  EULA 483  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz