Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Process-Spray - Functional Particles Produced in Spray Processes
  Großes Bild
 
Process-Spray - Functional Particles Produced in Spray Processes
von: Udo Fritsching
Springer-Verlag, 2016
ISBN: 9783319323701
1030 Seiten, Download: 41040 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 6  
  Contents 8  
  Part I: Process-Spray Micro Scale: Elementary Processes at Phase Boundaries 11  
     Chapter 1: Investigation of Elementary Processes of Non-Newtonian Droplets Inside Spray Processes by Means of Direct Numerical... 12  
        1.1 Introduction 15  
        1.2 Mathematical Modeling 16  
           1.2.1 Governing Equations 16  
           1.2.2 Basics of VOF Method 18  
        1.3 Results and Discussion 19  
           1.3.1 Lamella Stabilization 19  
              1.3.1.1 Head-On Collisions 20  
              1.3.1.2 Off-Center Collisions 22  
           1.3.2 Collision of Shear-Thinning Droplets 25  
              1.3.2.1 Head-On Collisions 26  
              1.3.2.2 Off-Center Collisions 30  
           1.3.3 Collision of Non-isoviscous Droplets 34  
              1.3.3.1 Modeling of Non-isoviscous Flow 35  
              1.3.3.2 Coalescence Suppression Algorithm 36  
              1.3.3.3 Collision of Equal Sized Droplets 37  
              1.3.3.4 Collision of Unequal Sized Droplets 39  
           1.3.4 Collision of Viscoelastic Droplets 43  
              1.3.4.1 Numerical Methods for Viscoelastic Flows 45  
              1.3.4.2 Simulation of Head-On and Off-Center Collisions 46  
           1.3.5 Mechanistic Modeling of the Collision of Viscous Droplets 49  
              1.3.5.1 Model Extension 51  
              1.3.5.2 Validation 52  
              1.3.5.3 Hybrid Model 54  
        1.4 Summary and Outlook 57  
        References 58  
     Chapter 2: Interfacial Engineering for the Microencapsulation of Lipophilic Ingredients by Spray-Drying 61  
        2.1 Introduction 62  
        2.2 Materials and Methods 65  
        2.3 Results and Discussion 69  
        2.4 Process Windows for beta-Lactoglobulin-Stabilised Emulsions 69  
        2.5 Impact of Protein Hydrolysis on the Interfacial Properties of beta-Lactoglobulin 73  
        2.6 When Limiting the Degree of Hydrolysis Good Encapsulation Properties May Be Achieved. Peptides at the Interface Reduce Aut... 79  
        2.7 Controlled Fibril Formation for the Stabilisation of the Oil-Water Interface and Enhancement of the Functionality of Spray... 82  
        2.8 Bilayer Emulsions with Pectin as Poly-Anion Are Stable During Atomisation and Drying 84  
           2.8.1 Molecular Structure of Pectin 84  
        2.9 Conclusion 89  
        References 90  
     Chapter 3: Structure Formation within Spray-Dried Droplets 96  
        3.1 Introduction 98  
        3.2 Modelling of Morphology Evolution Using Mesh-free Methods 100  
        3.3 The Smoothed Particle Hydrodynamics Method 101  
        3.4 Modelling Droplet Drying Using SPH 103  
        3.5 Modelling Morphology Evolution Within a Single Slurry Droplet by SPH 104  
        3.6 Representation of Primary Particles Within a Slurry 106  
        3.7 Surface Tension and Contact Angle 107  
        3.8 Simulation with a Constant Drying Rate (First Drying Period) 108  
        3.9 Model Extension to the Second Drying Period 112  
        3.10 Diffusion-Driven Drying of a Porous Structure and Coupling of SPH with a Grid-Based Method 117  
        3.11 A Mathematical Model of Spray Polymerisation and Reactive Spray Drying 119  
        3.12 Numerical Simulations of Spray Polymerisation 122  
        3.13 Conclusion and Outlook 129  
        References 130  
     Chapter 4: Acoustic Levitation: A Powerful Tool to Model Spray Processes 133  
        4.1 Introduction 135  
        4.2 Principles of the Acoustic Levitation 137  
        4.3 Material and Methods 138  
           4.3.1 Levitator Setup 138  
           4.3.2 Visualization Methods 140  
           4.3.3 Droplet Generation 140  
           4.3.4 Particle Removal 141  
           4.3.5 Raman Spectroscopy 142  
           4.3.6 Automatization 142  
           4.3.7 Substance Systems 143  
        4.4 Results and Discussion 144  
           4.4.1 Validation of the Simulated Fluid Dynamics Inside the Levitator 144  
        4.5 Reactive Systems 148  
           4.5.1 Polymerization of N-Vinyl-2-Pyrrolidone to Polyvinylpyrrolidone 148  
              4.5.1.1 Conversion Tracking by Raman Spectroscopy 148  
              4.5.1.2 Particle Morphology 153  
           4.5.2 Polymerization of Sodium Acrylate 155  
           4.5.3 Polymerization of Partially Neutralized Acrylic Acid 157  
              4.5.3.1 Process Properties 157  
              4.5.3.2 Particle Properties 161  
        4.6 Nonreactive System 164  
           4.6.1 Mannitol 164  
              4.6.1.1 Evaporation Process 164  
              4.6.1.2 Particle Morphology 167  
        4.7 Conclusions 171  
        4.8 Outlook 172  
        References 172  
     Chapter 5: Movement and Hydrodynamic Instabilities of Particle-Laden Liquid Jets in the Centrifugal Field Influenced by a Gas ... 176  
        5.1 Introduction 179  
        5.2 Physical-Mathematical Modeling 181  
        5.3 Time Steady Flow 183  
        5.4 Perturbation Analysis 189  
        5.5 Experiments 195  
        5.6 Experimental Results 198  
        5.7 Calculation Results and Comparison 201  
        5.8 Conclusion 206  
        5.9 Acknowledgment 207  
        References 207  
     Chapter 6: Experimental Investigation and Modeling of Coalescence and Agglomeration for Spray Drying of Solutions 210  
        6.1 Introduction 211  
        6.2 Material and Methods (Low Viscosity) 214  
           6.2.1 Experimental Setup 214  
           6.2.2 Liquid Properties 216  
        6.3 Results and Discussion (Low Viscosity) 217  
           6.3.1 Collision Maps of Low-Viscous Liquids 217  
           6.3.2 Satellite Droplet Formation with K30 Solutions 223  
        6.4 Material and Methods (High Viscosity) 226  
           6.4.1 Drop Generator for High-Viscous Liquids 226  
           6.4.2 Liquid Properties 227  
        6.5 Results and Discussion (High Viscosity) 228  
           6.5.1 Performance of the HiDrip Drop Generator 228  
           6.5.2 Collision Maps of High-Viscous Liquids 230  
        6.6 Methods and Materials (Different Viscosities) 232  
        6.7 Results and Discussion (Different Viscosities) 233  
        6.8 Conclusions 235  
        References 237  
     Chapter 7: Particle Formation from Gas-Enriched Polymeric Melts and Polymeric Solutions 239  
        7.1 Introduction 240  
        7.2 Material and Methods 241  
           7.2.1 Material 241  
              7.2.1.1 Carbon Dioxide 241  
              7.2.1.2 Water 241  
              7.2.1.3 Polyethyleneglycol (PEG 6000) 241  
              7.2.1.4 Polyvinylpyrrolidone (K30 and K90) 242  
           7.2.2 Methods 242  
              7.2.2.1 Spray Experiments 242  
              7.2.2.2 Lab Scale Plant 242  
              7.2.2.3 Pilot Scale Plant 243  
              7.2.2.4 Experiments in a High-Pressure View Cell 245  
              7.2.2.5 Thermography 246  
        7.3 Results and Discussion 246  
           7.3.1 Experiments Using a High-Pressure View Cell 246  
              7.3.1.1 Phase Behavior of Aqueous PVP K30 Solution and CO2 246  
              7.3.1.2 Phase Equilibrium 247  
           7.3.2 Spray Experiments (Saturated and Undersaturated Solutions) 247  
              7.3.2.1 Experiments with Flat Jet Nozzles 248  
              7.3.2.2 Experiments with Orifices and Capillaries 251  
              7.3.2.3 Experiments Using an Optically Transparent Capillary (Flow Observations) 255  
           7.3.3 Estimation of the Flow Regime of the Resulting Two Phase Flow in a Capillary 258  
              7.3.3.1 Deductions for the Continuously Working Process 260  
           7.3.4 Spray Experiments (with an Excess of CO2) 261  
              7.3.4.1 Experiments Using an Optically Transparent Capillary (Flow Observations) 261  
              7.3.4.2 Powder Generation of PEG 6000 262  
              7.3.4.3 Powder Generation of PVP (K30 and K90) 264  
              7.3.4.4 Thermography 264  
        7.4 Summary 267  
        References 268  
     Chapter 8: A Real-Time Process Analysis System for the Simultaneous Acquisition of Spray Characteristics 269  
        8.1 Introduction 269  
        8.2 Real-Time Process Analysis System 272  
           8.2.1 Goals 272  
           8.2.2 Architecture of the Real-Time Process Analysis System on the System Level 275  
              8.2.2.1 Choosing a Computing Platform for the Image-Processing Hardware 276  
                 Evaluation Summary 279  
        8.3 Image-Processing Methods for Droplet and Particle Measurement 280  
           8.3.1 A Novel Connected Components Analysis Algorithm 281  
              8.3.1.1 Data Structures, Operations, and Parameters 281  
              8.3.1.2 Algorithmic Description 283  
           8.3.2 A Novel Connected Components Analysis Architecture 286  
              8.3.2.1 Global Merger Patterns 287  
              8.3.2.2 Coalescing Unit 289  
              8.3.2.3 Evaluation of the CCA Architecture 290  
        8.4 Filament Formation 291  
        8.5 Droplet Collisions 294  
        8.6 Shape of Non-spherical Particles 296  
        8.7 Analysis of Droplet Jets 298  
        8.8 Measuring the Interfacial Tension of a Pendant Droplet 300  
        8.9 Characterization of Dynamic Spray Processes 303  
        8.10 Conclusion 305  
        References 305  
  Part II: Process-Spray Meso Scale: Process Analysis, Modeling and Scaling 310  
     Chapter 9: Modeling and Simulation of Single Particle and Spray Drying of PVP- and Mannitol-Water in Hot Air 311  
        9.1 Introduction 312  
        9.2 Single Bi-component Droplet Drying 313  
           9.2.1 Mathematical Model 314  
           9.2.2 Results and Discussion 319  
              9.2.2.1 Particle Expansion 322  
              9.2.2.2 Design of Experiments 325  
           9.2.3 Conclusions 327  
        9.3 Spray Drying 327  
           9.3.1 Mathematical Model 328  
           9.3.2 Results and Discussion 332  
           9.3.3 Conclusions 338  
        9.4 Perspectives 338  
        References 339  
     Chapter 10: Droplet-Stream Freeze-Drying for the Production of Protein Formulations: From Simulation to Production 342  
        10.1 Introduction 345  
        10.2 Methods 346  
           10.2.1 Spray Solutions 346  
           10.2.2 Spray-Drying 346  
           10.2.3 Spray-Freeze-Drying 346  
              10.2.3.1 Droplet Generation 346  
              10.2.3.2 Stroboscopic and High-Speed Camera Recordings 347  
              10.2.3.3 Droplet Freezing 348  
              10.2.3.4 Droplet Drying 349  
              10.2.3.5 Acoustic Levitator 350  
           10.2.4 Particle Analysis 351  
           10.2.5 Numerical Simulations 351  
              10.2.5.1 Hybrid Simulations of Fluid Flow and Temperature Field 352  
              10.2.5.2 Thermal Lattice-Boltzmann Method 353  
              10.2.5.3 Lagrangian Model for Drying of Frozen Particles 356  
        10.3 Results and Achievements 359  
           10.3.1 Droplet Generation 359  
           10.3.2 Collisions and Coalescence in Fast Streams of Small Droplets 359  
           10.3.3 Droplet Freezing 362  
              10.3.3.1 Droplet Freezing in Stagnant Cold Air 362  
              10.3.3.2 Droplet Freezing in a Cold, N2 -GasVortex 362  
              10.3.3.3 Jet-Vortex-Freezer 364  
           10.3.4 Drying 364  
           10.3.5 Dosage Forms 365  
           10.3.6 Numerical Simulations 368  
              10.3.6.1 Isothermal Flow About Porous Particles 368  
              10.3.6.2 Test Cases for Thermal LBM 375  
              10.3.6.3 Validation of the Drying Model 379  
        References 380  
     Chapter 11: Correlations Between Suspension Formulation, Drying Parameters, Granule Structure, and Mechanical Properties of Sp... 383  
        11.1 Introduction 384  
        11.2 Material and Methods 386  
        11.3 Method Development for Internal Structure Preparation and Quantification 389  
           11.3.1 Model Granules for Characterization Tasks 389  
           11.3.2 Internal Structure Preparation and Visualization 390  
           11.3.3 Internal Structure Quantification on Micro- and Macrostructure Level 392  
           11.3.4 Evaluation of Binder Distribution 395  
           11.3.5 Alternative Structure Visualization Techniques: Opportunities and Threads 398  
        11.4 Variation of Internal Granule Structure Via Suspension Formulation and Process Parameters 400  
           11.4.1 Investigated Parameters: Experimental Design 400  
           11.4.2 Effect of Changed Suspension Formulation on Suspension Properties and Resulting Internal Granule Structures 402  
              11.4.2.1 Variation of Solid Content 402  
              11.4.2.2 Variation of Primary Particle Size 403  
              11.4.2.3 Variation of Suspension Temperature 408  
              11.4.2.4 Variation of Suspension pH Value 409  
              11.4.2.5 Variation of Additive Type 413  
              11.4.2.6 Variation of Additive Amount 419  
              11.4.2.7 Summary: Effect of Varied Suspension Formulation on Suspension Properties and Resulting Internal Granule Structures 420  
           11.4.3 Effect of Changed Process Parameters on Resulting Internal Granule Structures 423  
              11.4.3.1 Pretests Regarding Droplet Size Determination Using External Nozzle Test Stand 424  
              11.4.3.2 Effect of Nozzle Gas Mass Flow, Suspension Mass Flow, and Drying Temperature: Analysis Using Design of Experiments DoE 427  
                 Suspension 1:3wt% Additive Component 428  
                 Suspension 2: No Additive Component 431  
              11.4.3.3 Further Examples for Varied Process Parameters 433  
                 Variation of Drying Kinetics 436  
                 Variation of Atomizer Type 438  
              11.4.3.4 Summary 442  
           11.4.4 Single Droplet Drying Experiments Regarding Influencing Internal Structure Development Via Suspension Formulation and P... 442  
        11.5 Conclusion: Correlations Between Internal Structure Parameters and Mechanical Properties 444  
        References 447  
     Chapter 12: Statistical Extinction Method for the Inline Monitoring of Particle Processes 449  
        12.1 Introduction 450  
        12.2 Statistical Extinction Method 452  
        12.3 Advanced Statistical Extinction Method 455  
        12.4 Simulation Model for the Extinction of Light Beams 457  
        12.5 Particle Arrangement in a Light Beam 459  
        12.6 Influence of the Distribution of the Light Intensity 461  
        12.7 Influence of the Aperture of the Detector Optic 463  
        12.8 Influence of the Polydispersity of a Particle Collective 464  
        12.9 Optical Principles of the SE-Sensor 467  
        12.10 Optical Principle of the PSD-SE-Sensor 471  
        12.11 One-Piece vs. Two-Piece Sensor Concept for Process Plants 472  
        12.12 Sensor Designs of the SE-Sensor for the Investigation of Different Particle Processes 475  
        12.13 Sensor Design of the PSD-SE-Sensor for the Investigation of Particle Processes 475  
        12.14 Measurement Range and Measurement Uncertainty of the SE-Method 477  
        12.15 Validation of the SE-Method with Monodisperse Particles 479  
        12.16 Investigation of Polydisperse Spray Processes with the SE-Method 482  
        12.17 Investigation of Spray Processes with the PSD-SE-Sensor 485  
        12.18 Summary and Conclusions 488  
        References 490  
     Chapter 13: Numerical Simulation of Monodispersed Droplet Generation in Nozzles 492  
        13.1 Introduction 493  
        13.2 Mathematical Model 495  
           13.2.1 Level Set Method 496  
           13.2.2 Treatment of Surface Tension Effects 498  
           13.2.3 New Generation Mesh Deformation Technique 499  
           13.2.4 Discrete Projection Method (DPM) 501  
        13.3 Numerical Results 504  
           13.3.1 Rising Bubble 504  
           13.3.2 Simulation of Laminar Jet Breakup: Dripping 505  
           13.3.3 Simulation of Laminar Jet Breakup: Jetting 508  
           13.3.4 Simulation of Laminar Jets: Coiling 509  
           13.3.5 Oscillating Non-Newtonian Droplet Simulations 510  
           13.3.6 Simulation of Encapsulation Processes 512  
        References 514  
     Chapter 14: Spray Drying Tailored Mannitol Carrier Particles for Dry Powder Inhalation with Differently Shaped Active Pharmace... 516  
        14.1 Introduction 517  
        14.2 Material and Methods 519  
           14.2.1 Materials 519  
           14.2.2 Spray Drying of Mannitol 520  
              14.2.2.1 Droplet Size Experiments 520  
              14.2.2.2 Pilot Scale Spray Dryer 521  
                 Early Experimental Setup 521  
                 Improved Experimental Setup 521  
              14.2.2.3 Hot Stage Microscopy 522  
              14.2.2.4 Droplet Size Analysis 522  
              14.2.2.5 Design of Experiments 522  
              14.2.2.6 Particle Size 523  
              14.2.2.7 Particle Visualisation 523  
              14.2.2.8 Particle Morphology 524  
                 Survey for Particle Shape and Surface Roughness 524  
                 Particle Cross Sections 524  
                 Surface Roughness by SEM Evaluation 525  
                 Particle Shape by Image Analysis 525  
              14.2.2.9 Flowability 525  
              14.2.2.10 Brunauer-Emmett-Teller (BET) Surface Area 526  
              14.2.2.11 Breaking Strength 526  
              14.2.2.12 Mercury Intrusion Porosity (MIP) 526  
              14.2.2.13 X-Ray Powder Diffraction 527  
           14.2.3 Simulation of the Drying of Bi-component Droplets 527  
           14.2.4 Drug Preparation 527  
              14.2.4.1 Jet Mill Micronisation of Model Drugs 528  
              14.2.4.2 Spray Drying of Model Drugs 528  
              14.2.4.3 Particle Size 528  
              14.2.4.4 X-Ray Powder Diffraction 528  
              14.2.4.5 Visualisation 529  
           14.2.5 Preparation of Interactive Powder Blends 529  
              14.2.5.1 Blending of Mannitol and Drug 529  
              14.2.5.2 Drug Localisation by Confocal Raman Analysis 529  
              14.2.5.3 Blend Homogeneity 530  
              14.2.5.4 Drug Quantification 530  
           14.2.6 Aerodynamic Characterisation 531  
              14.2.6.1 Assessment of Fine Particles 531  
              14.2.6.2 Drug Quantification 532  
        14.3 Results and Discussion 532  
           14.3.1 Impact of Droplet Size on the Drying of Mannitol 532  
           14.3.2 Hot Stage Microscopy to Elucidate the Drying of Mannitol 533  
           14.3.3 Spray Drying of Mannitol: Pilot Scale 535  
              14.3.3.1 Design of Experiments: Power of the Model 536  
              14.3.3.2 Particle Size 536  
              14.3.3.3 Particle Morphology 539  
                 Particle Shape 539  
                 Surface Roughness 542  
              14.3.3.4 Flowability 544  
              14.3.3.5 BET Surface Area 545  
              14.3.3.6 Breaking Strength 545  
              14.3.3.7 Mercury Intrusion Porosimetry (MIP) 546  
              14.3.3.8 Crystallinity 547  
           14.3.4 Simulation of the Drying of Bi-component Droplets 547  
           14.3.5 Drug Quality and Carrier Selection 548  
           14.3.6 Aerodynamic Characterisation 551  
              14.3.6.1 Micronised SBS Quality 552  
              14.3.6.2 Spray Dried SBS Quality 553  
                 Correlation of Particle Shape and FPF 553  
                 Correlation of Surface Roughness and FPF 556  
                 Correlation of Particle Size and FPF 558  
                 Correlation of Flowability and FPF 559  
              14.3.6.3 Correlation of Spray Drying Parameters and DPI Performance 560  
              14.3.6.4 Transferability to Other Drugs: Blends with Budesonide 560  
        14.4 Conclusions 561  
        References 562  
     Chapter 15: Pulverisation of Emulsions with Supercritical CO2 566  
        15.1 Introduction 567  
        15.2 Materials 567  
        15.3 Thermodynamic Properties of the Investigated Liquids 568  
           15.3.1 Experimental Procedures 568  
              15.3.1.1 Solubility Measurements 568  
              15.3.1.2 Viscosity and Density Measurements 569  
              15.3.1.3 Interfacial Tension Measurements 571  
           15.3.2 Results 573  
              15.3.2.1 Solubility 573  
              15.3.2.2 Viscosity 578  
              15.3.2.3 Density 581  
              15.3.2.4 Interfacial Tension 584  
           15.3.3 Spray Behaviour and Powder Production 588  
              15.3.3.1 Experimental Procedure 588  
           15.3.4 Results 591  
              15.3.4.1 Disintegration of Pure and Gas-Saturated Liquid Sheets 591  
              15.3.4.2 Powder Characteristics 598  
        15.4 Conclusions 603  
        References 605  
     Chapter 16: Superheated Atomization 608  
        16.1 Introduction 610  
        16.2 Material and Methods 611  
           16.2.1 Test Facility and Nozzles 611  
           16.2.2 Measurement Devices 614  
           16.2.3 Sprayed Fluids 615  
        16.3 Results 619  
           16.3.1 Characteristics Inside the Nozzle 619  
           16.3.2 Spray Characteristics 625  
        16.4 Discussion 635  
        16.5 Conclusion 642  
        References 643  
     Chapter 17: Direct Numerical Simulations of Shear-Thinning Liquid Jets and Droplets 645  
        17.1 Introduction 646  
        17.2 Numerical Method 648  
        17.3 Viscosity Model and Material Properties 649  
        17.4 Investigation of a PVP Solution Liquid Jet 651  
        17.5 Investigation of Praestol Jets 656  
        17.6 Investigation of Droplet Oscillations 664  
        17.7 Conclusion 673  
        References 675  
     Chapter 18: IntegralProcess Modelling and Simulation for Solid-Particle-Forming Spray Processes 677  
        18.1 Introduction 679  
        18.2 Jet/Sheet Fragmentation Model 681  
           18.2.1 Volume of Fluid Method 681  
           18.2.2 Numerical Simulation of Liquid Sheet Fragmentation Process 682  
              18.2.2.1 Case Setup 682  
              18.2.2.2 Liquid Sheet Disintegration 686  
              18.2.2.3 Liquid Sheet Breakup Length 687  
              18.2.2.4 Primary Droplet Size and Velocity 688  
        18.3 Droplet Breakup Model 690  
           18.3.1 Empirical Models 692  
           18.3.2 Droplet-Deformation-Based Models 693  
              18.3.2.1 TAB Model 693  
              18.3.2.2 ETAB Model 694  
           18.3.3 Validation: Melt Atomization Process 695  
              18.3.3.1 Case Setup 696  
              18.3.3.2 Gas Flow Dynamics 700  
              18.3.3.3 Pressure-Swirl Atomization Process 701  
              18.3.3.4 Free-Fall Atomization Process 705  
        18.4 Heat Transfer and Solidification Model 706  
        18.5 Particle-Droplet Collision Model 709  
           18.5.1 Collision Number 709  
           18.5.2 Collision Efficiency 710  
              18.5.2.1 Case Setup 711  
              18.5.2.2 Gas Flow Dynamics 712  
              18.5.2.3 Collision Efficiency 712  
        18.6 Particle Penetration Model 715  
           18.6.1 Force Balance Approach 716  
           18.6.2 CFD Model Description 717  
              18.6.2.1 Volume of Fluid Method 717  
              18.6.2.2 Six-DoF Method 717  
              18.6.2.3 Dynamic Mesh Technique 718  
           18.6.3 Penetration Model Validation 719  
           18.6.4 CFD Penetration Model Results and Discussion 723  
              18.6.4.1 Case Setup 723  
              18.6.4.2 Collision Outcomes 724  
              18.6.4.3 Re-We Regime Maps for Particle Penetration 726  
        18.7 Multiscale Modelling Spray Processing of Composite Particles 730  
           18.7.1 Particle-Droplet Mixing Behaviour (Macro-scale) 732  
           18.7.2 Particle-Droplet Collision Behaviour (Mesoscale) 733  
           18.7.3 Particle Penetration Behaviour (Micro-scale) 737  
              18.7.3.1 Apparent Viscosity 737  
              18.7.3.2 Critical Penetration Velocity 738  
              18.7.3.3 Incorporation Efficiency and Sticking Efficiency 741  
        18.8 Summary and Conclusions 743  
        References 743  
  Part III: Process-Spray Macro Scale: Process Function, Particle and Powder Properties 747  
     Chapter 19: Hot Gas Atomization of Complex Liquids for Powder Production 748  
        19.1 Introduction 749  
        19.2 Material and Methods 752  
        19.3 Hot Gas Atomization Setup: Hot Gas Nozzle Characteristics and Implementation of Hot Gas Nozzle into the Spray Tower 754  
        19.4 Basic Flow and Temperature Field in the Spray Tower 758  
        19.5 Atomization Characteristics and Spray Propagation 765  
        19.6 Drying of PVP Solutions in Hot Gas Atomization Process 768  
        19.7 Impact on Droplet Clustering on Heat Transfer Within the Spray 770  
           19.7.1 Numerical Setup for Prediction of Spray Propagation with Large-Eddy Simulation 770  
        19.8 Results: Particle Clustering 773  
        19.9 Impact of Spray Chamber Design and Atomizer Gas Pressure on Cluster Sizes 779  
        19.10 Correlation of the Droplet-Gas Interaction 783  
        19.11 Summary and Conclusions 787  
        References 788  
     Chapter 20: Polymerization in Sprays: Atomization and Product Design of Reactive Polymer Solutions 792  
        20.1 Introduction 794  
        20.2 Material and Methods: Atomization of Polymer Solutions 798  
        20.3 Results of the Atomization of Polymer Solutions 803  
        20.4 Material and Methods: Rheokinetics 813  
        20.5 Results of the Rheokinetics 820  
        20.6 Pre-reaction Within the Nozzle 827  
        20.7 Conclusion 834  
        References 835  
     Chapter 21: Investigation on the Usage of Effervescent Atomization for Spraying and Spray Drying of Rheological Complex Food L... 839  
        21.1 Introduction 841  
        21.2 Material and Methods 841  
           21.2.1 Model Systems 841  
           21.2.2 Polyvinylpyrrolidone 841  
           21.2.3 Maltodextrin 845  
           21.2.4 Emulsions 847  
           21.2.5 Effervescent Atomizer 852  
           21.2.6 Conventional Atomizers 853  
           21.2.7 Two-Phase Flow Inside an Effervescent Atomizer 854  
           21.2.8 Test Rig 855  
           21.2.9 Modeling of Spray Drop Sizes 857  
           21.2.10 Abel Inversion 859  
           21.2.11 Spray Dryer 860  
        21.3 Results, Achievements, and Discussion/Conclusions 861  
           21.3.1 Flow Pattern Inside the Atomizer 861  
           21.3.2 Flow Pattern Inside the Nozzle Orifice 866  
           21.3.3 Spray Characteristics 866  
              21.3.3.1 Spray Structure 866  
              21.3.3.2 Spray Drop Sizes of Single-Phase Feeds 870  
              21.3.3.3 Spray Drop Sizes of Multiphase Feeds 880  
              21.3.3.4 Pulsation of Spray 883  
              21.3.3.5 Predicted Spray Drop Size 883  
              21.3.3.6 Local Spray Drop Sizes 885  
           21.3.4 Oil Drop Size 886  
           21.3.5 Spray Drying of PVP K30 Solutions 891  
        21.4 Conclusion 895  
        References 895  
     Chapter 22: Experimental Evaluation and Control of Interaction of Gas Environment and Rotary Atomized Spray for Production of ... 899  
        22.1 Introduction 901  
           22.1.1 Spraying of Liquid 902  
           22.1.2 Laminar Operating Rotary Atomizer 902  
           22.1.3 Similarity Trials 904  
           22.1.4 Objective 906  
        22.2 Breakup of Stretched Liquid Threads Influenced by Cross-Wind Flow: Similarity Trials 906  
           22.2.1 Theory 906  
           22.2.2 Material and Method 908  
           22.2.3 Experimental Results: Breakup Length 909  
           22.2.4 Experimental Results: Mean Drop Size 912  
           22.2.5 Experimental Results: Drop Size Distribution 916  
        22.3 Design of Gas-Distribution System 918  
           22.3.1 Flow Simulation Theory 919  
           22.3.2 Gas-Distribution Concept 919  
           22.3.3 Realization of the Gas Distributor´s Concept 920  
        22.4 Optimization of the LamRot Spraying Device 924  
           22.4.1 Direction of Thread Propagation 925  
           22.4.2 Avoiding Sedimentation 927  
           22.4.3 Assistance of Swirl Flow by the LamRot Design 927  
        22.5 Proving of the Gas-Distribution Concept 928  
           22.5.1 Spray Drying of PVP Solution 929  
           22.5.2 Spray Drying of Mannitol 931  
        22.6 Conclusion 933  
        References 934  
     Chapter 23: Processing of Functional Capsule Powder Particles Based on Multiple Emulsions Using a Prilling Process 937  
        23.1 Introduction 939  
        23.2 Materials and Methods 943  
           23.2.1 Materials 943  
              23.2.1.1 Watery Phases 943  
              23.2.1.2 Oil Phases 943  
              23.2.1.3 Surfactants 943  
              23.2.1.4 Thickener 944  
              23.2.1.5 Model Emulsion Systems and Their Compositions 944  
              23.2.1.6 Materials for Iron Release Experiment 944  
           23.2.2 Analytical Methods and Procedures and Selected Analytical Results 944  
              23.2.2.1 Shear Viscosity of Emulsions 946  
              23.2.2.2 Viscoelasticity of Emulsions 948  
              23.2.2.3 Extensional Viscosity of Emulsions 949  
              23.2.2.4 Surface Tension sigma 950  
              23.2.2.5 Interfacial Tension gamma (O/W and W/O/W Emulsions) 951  
           23.2.3 Processing Procedures and Conditions 953  
              23.2.3.1 Emulsion Preparation 953  
                 SE Preparation Using Rotor-Stator System 953  
                 DE Preparation Using Rotating Membrane 953  
              23.2.3.2 Spray Processing Experiments Using Air-Assisted Atomizer 954  
                 Experimental Setup 954  
                 Spray Processing of DE with Functional Tracer 955  
                 Emulsion Prilling Experiments 956  
              23.2.3.3 Spraying of Emulsions Applying a Novel ROtary Pressure ATomizer (ROPAT) 956  
              23.2.3.4 Iron Release Experiment Setup and Procedure 957  
        23.3 Results, Achievements, and Discussion/Conclusions 958  
           23.3.1 Spray Processing: Structural Preservation Criterion (Process-Structure Relation) 958  
              23.3.1.1 Influence of Spray Process Parameters on Secondary Droplets (3AT Nozzles) 959  
                 Impact of Gas/Liquid Ratio on SE Structure 960  
                 Impact of GLR on DE Structure 961  
                 Impact of Pure Liquid-Cap Nozzle Flow on Secondary Droplet Size of SE, DE 963  
                 Two-Phase Flow Impact on Secondary Droplet Size of SE, DE in 3AT Nozzles 968  
                 Impact of Spray Processing on Tertiary Emulsion Droplet/Spray Particle Size 971  
                 Spraying of DE (W1/O/W2) and Release of Tracer into Continuous Phase 974  
              23.3.1.2 Rotary Pressure Atomization a Mechanically Gentle Alternative (ROPAT Nozzle) 976  
        23.4 Conclusions/Summary 977  
        Bibliography 979  
     Chapter 24: Analysis of Mechanisms for PVP-Active-Agent Formulation as in Supercritical Antisolvent Spray Process 982  
        24.1 Introduction 983  
        24.2 Materials and Methods 984  
           24.2.1 Material 984  
           24.2.2 Antisolvent 985  
           24.2.3 Solvents 985  
           24.2.4 Solutes 986  
           24.2.5 SAS Plant 987  
           24.2.6 Saturation Measurements 989  
           24.2.7 Elastic Light Scattering Setup 990  
           24.2.8 Combined Elastic and Inelastic Scattering Light Setup 993  
           24.2.9 Particle Analysis 995  
           24.2.10 Dissolution Measurements 997  
        24.3 Results and Discussion 998  
           24.3.1 Solute Solubility Measurements of Certain Solutes 999  
           24.3.2 Mixing Behavior of Certain Solvents 1001  
           24.3.3 Generation of Amorphous PVP Particles 1006  
           24.3.4 Influence of Pressure and Concentration 1007  
           24.3.5 Influence of the Solvent Composition 1008  
        24.4 Generation of Paracetamol Crystals from EtOH, AC, and EtOH/AC Mixture Solutions 1011  
           24.4.1 Ethanol Solutions 1011  
           24.4.2 Acetone Solutions 1013  
           24.4.3 Mixtures of Ethanol and Acetone 1016  
           24.4.4 Generation of Solid Dispersions 1019  
           24.4.5 PCM: PVP 1019  
           24.4.6 PVP and Paracetamol (EtOH/AC=70/30 as Solvent) 1020  
           24.4.7 Combined Elastic and Inelastic Scattered Light Measurements 1023  
        24.5 Conclusion 1025  
        References 1027  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz