Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
New Frontiers in Oil and Gas Exploration
  Großes Bild
 
New Frontiers in Oil and Gas Exploration
von: Congrui Jin, Gianluca Cusatis
Springer-Verlag, 2016
ISBN: 9783319401249
522 Seiten, Download: 21166 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 5  
  Contents 7  
  Chapter 1: Understanding Asphaltene Aggregation and Precipitation Through Theoretical and Computational Studies 9  
     1.1 Introduction 10  
     1.2 Experiment Studies 11  
     1.3 Theoretical Studies 15  
        1.3.1 Theoretical Modeling of Asphaltene Aggregation 15  
        1.3.2 Theoretical Modeling of Asphaltene Precipitation 16  
           1.3.2.1 Models Based on Colloidal Theory 17  
           1.3.2.2 Models Based on Solubility Theory 18  
              Models Based on Regular Solution Theory 19  
              Models Based on Equation of State Methods 24  
     1.4 Computational Studies 27  
        1.4.1 Studies Using QM Approach 33  
        1.4.2 Studies Using MM and MD Approaches 35  
           1.4.2.1 Studies Using MM Approach 35  
           1.4.2.2 Studies Using MD Approach 36  
        1.4.3 Studies Using Mesoscopic Simulation Techniques 42  
     1.5 Summary and Future Perspectives 43  
     References 43  
  Chapter 2: Advancement in Numerical Simulations of Gas Hydrate Dissociation in Porous Media 56  
     2.1 Introduction 57  
     2.2 Background 58  
        2.2.1 Introduction to Gas Hydrates 58  
        2.2.2 Existing Research on Gas Hydrates 59  
        2.2.3 Numerical Simulations of Gas Hydrates 61  
     2.3 Basic Mechanisms in Hydrate Disassociation: Governing Equation System 64  
        2.3.1 Basic Mechanisms Involved in Gas Hydrate Dissociation 64  
        2.3.2 A Unified Mathematical Framework for Different Mechanisms 66  
        2.3.3 Classification of Existing Methods 69  
        2.3.4 Comparison and Integration 71  
           2.3.4.1 Classifications Based on Criteria 1, 2, and 3 71  
           2.3.4.2 Classifications Based on Criteria 4 76  
     2.4 Materials Properties for Gas Hydrate Modeling: Auxiliary Relationships 78  
        2.4.1 Material Properties Related to Heat Transfer 79  
           2.4.1.1 Heat Capacity 80  
           2.4.1.2 Thermal Conductivity 81  
           2.4.1.3 Thermal Diffusivity 83  
        2.4.2 Material Properties Related to Mass Transfer 83  
           2.4.2.1 Absolute Permeability and Permeability Considering Hydrate Saturation 84  
           2.4.2.2 Relative Permeability 85  
           2.4.2.3 Capillary Pressure-Saturation Relationship 86  
           2.4.2.4 Diffusion Coefficients 87  
           2.4.2.5 Hydraulic Diffusivity 88  
           2.4.2.6 Mass Transfer Between Phases 88  
        2.4.3 Material Properties Related to Chemical Reactions 89  
           2.4.3.1 Thermodynamic State 89  
           2.4.3.2 Equilibrium: Phase Diagram 90  
           2.4.3.3 Kinetic: Dissociation Kinetics 92  
        2.4.4 Material Parameters for Momentum Balance 94  
           2.4.4.1 Solid: Geomechanical Properties, Solid-Fluid Coupling, Constitutive Relations 94  
           2.4.4.2 Liquid: Darcy´s Law, Viscosity 96  
           2.4.4.3 Solid-Liquid Interaction: Stress Formulation 97  
     2.5 Discussions 98  
        2.5.1 Validation of the Performance of Existing Models 99  
           2.5.1.1 Validations by Experiments 99  
           2.5.1.2 Mutual Validation Between Models 100  
           2.5.1.3 Applications 100  
        2.5.2 Suggestion on Practice Production by Model Simulations 101  
           2.5.2.1 Recovery Schemes 101  
           2.5.2.2 Critical Factors in Recovery 102  
           2.5.2.3 Governing Mechanisms for Hydrate Dissociation 104  
        2.5.3 Research Trends and Future Needs 105  
           2.5.3.1 Physical Fields 105  
           2.5.3.2 Phases and Components 105  
           2.5.3.3 Equilibrium Versus Kinetic Models 105  
           2.5.3.4 Environmental Effects 106  
     2.6 Conclusion 107  
     References 108  
  Chapter 3: Discrete Element Modeling of the Role of In Situ Stress on the Interactions Between Hydraulic and Natural Fractures 119  
     3.1 Introduction 119  
     3.2 Discrete Element Method 120  
     3.3 Representing Discrete Fracture 121  
     3.4 Hydromechanical Coupling 122  
     3.5 PKN Model Simulation 123  
     3.6 Hydraulic (HF) and Natural (NF) Fracture Interaction 128  
     3.7 Parametric Study: Reference Model 129  
        3.7.1 Anisotropic Stress Field 131  
        3.7.2 Effect of Different Orientation of the NF 134  
        3.7.3 Effect of Different Orientation of a Dilatant NF Combined with Higher Anisotropic Stress Field 138  
     3.8 Conclusions 139  
     References 140  
  Chapter 4: Rock Physics Modeling in Conventional Reservoirs 143  
     4.1 Review of Geophysical Concepts 143  
     4.2 Empirical Relations 145  
     4.3 Solid Phase 148  
     4.4 Fluid Phase 151  
     4.5 Dry Rock Properties 153  
        4.5.1 Granular Media Models 155  
        4.5.2 Inclusion Models 156  
     4.6 Saturated Rock Properties 159  
     4.7 Example 161  
     4.8 Other Rock Physics Models 162  
     4.9 Rock Physics Inversion 164  
     References 168  
  Chapter 5: Geomechanics and Elastic Anisotropy of Shale Formations 170  
     5.1 Introduction 170  
     5.2 Theory of Anisotropy 172  
        5.2.1 Elastic Anisotropy 172  
        5.2.2 Classification of Anisotropic Media 172  
        5.2.3 VTI Medium 173  
        5.2.4 Shale Anisotropy 174  
        5.2.5 Case Study 175  
     5.3 Fundamentals of Geomechanical Modeling for Wellbore Instability 179  
        5.3.1 Chemically Induced Instability 179  
        5.3.2 Mechanically Induced Instability 179  
        5.3.3 Factors Influencing Wellbore Stability 179  
        5.3.4 In Situ Stress Field 180  
        5.3.5 Wellbore Pressure 181  
        5.3.6 Fractures and Damages in the Formation 181  
        5.3.7 Thermal Effect 182  
        5.3.8 Fluid Flow into the Wellbore 182  
        5.3.9 Chemical Effects (in Shales) 182  
        5.3.10 Numerical Modeling of Wellbore Stability 183  
           5.3.10.1 Elastic Models 183  
           5.3.10.2 Elastoplastic and Poro-elastoplastic Models 184  
           5.3.10.3 Stress Distribution Around the Wellbore 184  
           5.3.10.4 Mohr-Coulomb Failure Criterion 187  
              The Minimum Wellbore Pressure 187  
              The Maximum Wellbore Pressure 188  
              Elastoplastic Stress Analysis 188  
           5.3.10.5 Wellbore Stability in Laminated (VTI) Formations 191  
              Anisotropic Strength Model 191  
     5.4 Anisotropic Geomechanical Modeling Case Study-Bakken Formation 193  
        5.4.1 Anisotropy in Geomechanical Modeling 193  
           5.4.1.1 Vertical Stress 194  
           5.4.1.2 Pore Pressure 195  
           5.4.1.3 Horizontal Stress 195  
           5.4.1.4 Anisotropic Elastic Parameters 196  
           5.4.1.5 Stress Profile 197  
           5.4.1.6 Maximum Horizontal Principal Stress (Second Approach) 199  
           5.4.1.7 Maximum Principal Horizontal Stress Orientation 200  
        5.4.2 3D Numerical Modeling 201  
           5.4.2.1 Vertical Well (0 Deviation Angle) 201  
           5.4.2.2 Inclined Well (45 Attack Angle) (Figs.5.26, 5.27, 5.28, and 5.29) 205  
     5.5 Summary and Recommendations 209  
     References 210  
  Chapter 6: Nano-Scale Characterization of Organic-Rich Shale via Indentation Methods 213  
     6.1 Introduction 214  
     6.2 Multi-scale Thought Model for Shale 214  
     6.3 Experimental Procedure 216  
        6.3.1 Materials 216  
        6.3.2 Grinding and Polishing 216  
        6.3.3 Roughness Characterization 220  
     6.4 Mechanical Properties 221  
        6.4.1 Elastic Properties 221  
        6.4.2 Indentation Equipment 222  
        6.4.3 Indentation Experiment 223  
        6.4.4 Statistical Nano-Indentation 225  
        6.4.5 Elastic Mechanical Homogenization 232  
     6.5 Conclusion and Future Perspectives 234  
     References 235  
  7: On the Production Analysis of a Multi-Fractured Horizontal Well 238  
     7.1 Introduction 239  
     7.2 Mathematical Formulation 241  
     7.3 Auxiliary Problem (Unit Step Pressure Decline) 242  
        7.3.1 Single Fracture 244  
        7.3.2 Infinite Fracture Array () 244  
        7.3.3 Finite Fracture Array Problem 246  
           7.3.3.1 Production Rate 247  
           7.3.3.2 Cumulative Production 248  
        7.3.4 Uniform Leak-in Approximation 248  
     7.4 Transient Pressure Decline: Constant Rate of Production from Fractured Well 252  
        7.4.1 Single Fracture 253  
        7.4.2 Infinite Fracture Array 253  
        7.4.3 Finite Fracture Array 254  
           7.4.3.1 Pressure Evolution 254  
           7.4.3.2 Cumulative Produced Volume 254  
        7.4.4 Uniform Leak-in Approximation 254  
     7.5 Summary 257  
     References 258  
  8: Interfacial Engineering for Oil and Gas Applications: Role of Modeling and Simulation 259  
     8.1 Introduction 259  
     8.2 Enhanced Oil Recovery 261  
        8.2.1 Surfactants and Additives 261  
        8.2.2 Supercritical CO2 263  
        8.2.3 Produced Water Demulsification and Treatment 263  
     8.3 Flow Assurance 266  
        8.3.1 Hydrate Formation Mechanisms 266  
        8.3.2 Kinetic Inhibitor Design 267  
     8.4 Carbon Capture and Separation 268  
        8.4.1 Adsorbents 268  
        8.4.2 Membranes 269  
     8.5 CO2 Conversion and Utilization 271  
     8.6 Conclusion and Outlook 272  
     References 273  
  Chapter 9: Petroleum Geomechanics: A Computational Perspective 286  
     9.1 Introduction 286  
     9.2 Subsidence 287  
     9.3 Borehole Stability 300  
        9.3.1 Case 1: Impact of the FEM Schemes (SGS/GSGS and Galerkin FEM) 309  
        9.3.2 Case 2: Impact of Thermal and Solute Convection in Lower Permeability Formations 310  
        9.3.3 Case 3: Impact of Thermal and Solute Convection in Higher Permeability Formations 312  
        9.3.4 Case 4: Impact of the Membrane Efficiency 314  
     9.4 Hydraulic Fracturing 316  
        9.4.1 Case 1: Fully Coupled XFEM Solution 323  
        9.4.2 Case 2: Impact of Injection Rate 325  
        9.4.3 Case 3: Impact of Injection Temperature 326  
        9.4.4 Case 4: Impact of Aquifer Stiffness 327  
        9.4.5 Case 5: Impact of Aquifer Permeability 328  
        9.4.6 Case 6: Impact of the Stabilized FEM Scheme 329  
        9.4.7 Case 7: Impact of the FEM Mesh Size 330  
     9.5 Conclusions 330  
     References 331  
  Chapter 10: Insights on the REV of Source Shale from Nano- and Micromechanics 335  
     10.1 Introduction 336  
     10.2 Sample Preparation for Nano- and Micro-Scale Shale Characterization 338  
     10.3 Test Methods 340  
        10.3.1 Compositional Analysis 340  
        10.3.2 Nanoindentation 340  
        10.3.3 Micro-Cantilever Beams 341  
     10.4 Nano- and Micro-Measurements 343  
        10.4.1 Compositional Analysis 343  
        10.4.2 Nanoindentation 345  
        10.4.3 Micro-Cantilever Beams loading 346  
     10.5 Micro-Measurement Cantilever-Beam Overview 357  
        10.5.1 Macro-Measurements of Kerogen-Rich Shale Following ASTM and ISRM Methods 359  
           10.5.1.1 Brazilian Tensile Test 359  
        10.5.2 Three-Point Chevron Notch Semicircular Bending Shale Sample (CNSCB) 360  
           10.5.2.1 Anisotropic Tensile Strength 361  
     10.6 Summary and Future Direction (Macro-Scale) 363  
     References 365  
  11: Experimental and Numerical Investigation of Mechanical Interactions of Proppant and Hydraulic Fractures 367  
     11.1 Introduction 367  
     11.2 Experimental Investigation 370  
     11.3 Theoretical Study and Numerical Modeling 374  
     11.4 Discussion 380  
     11.5 Concluding Remarks 382  
     References 383  
  Chapter 12: Integrated Experimental and Computational Characterization of Shale at Multiple Length Scales 389  
     12.1 Introduction 389  
     12.2 Experimental Studies 391  
        12.2.1 Overview of Experimental Studies for the Mechanical Characterization of Shale 391  
           12.2.1.1 Field Scale 391  
           12.2.1.2 Macroscopic Scale 392  
           12.2.1.3 Mesoscopic Scale 395  
           12.2.1.4 Microscopic and Nanometer Scales 396  
        12.2.2 Experimental Characterization of Marcellus Shale at the Macroscopic Scale 398  
           12.2.2.1 Sample Preparation 399  
           12.2.2.2 Ultrasonic Pulse Velocity 400  
           12.2.2.3 Brazilian Tensile Tests 402  
           12.2.2.4 Uniaxial Compression Tests 405  
           12.2.2.5 Three-Point-Bending Tests 407  
        12.2.3 Discussion 408  
     12.3 Computational Studies 409  
        12.3.1 Overview of Modeling Techniques for the Mechanical Characterization of Shale 409  
           12.3.1.1 Macroscopic Scale 410  
           12.3.1.2 Mesoscopic Scale 413  
           12.3.1.3 Microscopic and Nanometer Scales 415  
           12.3.1.4 Multiscale Algorithm 416  
        12.3.2 A Micromechanical Discrete Approach 417  
           12.3.2.1 Geometrical Characterization of Shale Internal Structure 418  
           12.3.2.2 Constitutive Equations 419  
              Elastic Behavior 419  
              Fracturing Behavior 421  
              Frictional Behavior 422  
           12.3.2.3 Preliminary Results 422  
        12.3.3 Discussion 424  
     References 425  
  13: Recent Advances in Global Fracture Mechanics of Growth of Large Hydraulic Crack Systems in Gas or Oil Shale: A Review 435  
     13.1 Introduction 435  
     13.2 Brief Overview of Fracking Technology 436  
     13.3 Estimation of Hydraulic Crack Spacing from Gas Flow History Observed at Wellhead 438  
        13.3.1 Diffusion of Gas from Shale into Hydraulic Cracks 438  
        13.3.2 Total Volume and Surface Area of Hydraulic Crack System 440  
        13.3.3 Flow of Gas from the Hydraulic Crack System to the Wellhead 440  
        13.3.4 Long-Term Gas Flow as the Main Indicator of Crack Spacing 442  
     13.4 Evolution of a System of Parallel Hydraulic Cracks 443  
        13.4.1 Hydrothermal Analogy 443  
        13.4.2 Review of Stability of Parallel Crack Systems 444  
     13.5 Evolution of Two Orthogonal Systems of Hydraulic Cracks 446  
        13.5.1 Cracked Finite Elements for Crack Band Model 447  
        13.5.2 Secondary Lateral Crack Initiation and the Necessity to Include Diffusion 447  
        13.5.3 Water Flow Through Hydraulic Cracks and Pores 449  
        13.5.4 Combined Diffusion Through Shale Pores and Flow Along the Cracks 449  
        13.5.5 Crack Opening Corresponding to Smeared Damage Strain in Crack Band Model 451  
        13.5.6 Pore Pressure Effect on Stresses in the Shale 451  
        13.5.7 Numerical Prediction of Evolutions of Hydraulic Crack System 452  
     13.6 Closing Comments 454  
     References 457  
  Chapter 14: Fundamentals of the Hydromechanical Behavior of Multiphase Granular Materials 461  
     14.1 Introduction 461  
        14.1.1 Fundamental Definition in Terms of Volumes and Weights 462  
        14.1.2 Definition of Suction 464  
        14.1.3 Soil Water Retention Curve (SWRC) 465  
           14.1.3.1 Enhanced Models to Describe the WRC Based on Microstructural Features 467  
        14.1.4 Stress Variable in Unsaturated Conditions 472  
        14.1.5 Small Strain Stiffness 474  
        14.1.6 Stiffness at Moderate (Larger) Strain: Compressibility 476  
           14.1.6.1 Modelling the Compressibility Behavior 477  
        14.1.7 Strength of Unsaturated Soils 478  
     References 483  
  Chapter 15: Beyond Hydrocarbon Extraction: Enhanced Geothermal Systems 487  
     15.1 Introduction to Sedimentary Enhanced Geothermal Systems (SEGS) 488  
     15.2 Description of a Modeled SEGS Reservoir 489  
        15.2.1 Flow Equations 491  
        15.2.2 Heat Transfer Equations 492  
     15.3 Interpretation of Simulation Results 493  
        15.3.1 Effect of Reservoir Permeability on Thermal Breakthrough Time and Reservoir Thermal Performance 497  
        15.3.2 Effect of Boundaries on Reservoir Thermal Performance 498  
     15.4 Issues of Long-Term Heat Extraction 499  
     15.5 In Situ Stresses and Their Re-distribution in EGS 501  
     15.6 Concluding Remarks 504  
     References 505  
  16: Some Economic Issues in the Exploration for Oil and Gas 507  
     16.1 Introduction 507  
     16.2 Modeling Exploration 508  
     16.3 Some Empirical Evidence 510  
        16.3.1 Trends in the Probability of a Dry Hole 510  
        16.3.2 Trends in Price and Drilling 511  
     16.4 Developments in the Gulf of Mexico 512  
     16.5 Discussion 516  
     References 517  
  ERRATUM TO 519  
  Index 520  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz