Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Handbook of Optimization in the Railway Industry
  Großes Bild
 
Handbook of Optimization in the Railway Industry
von: Ralf Borndörfer, Torsten Klug, Leonardo Lamorgese, Carlo Mannino, Markus Reuther, Thomas Schlechte
Springer-Verlag, 2018
ISBN: 9783319721538
334 Seiten, Download: 8829 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 5  
     References 9  
  Acknowledgments 11  
  Contents 12  
  The Editors 14  
  List of Contributors 15  
  In Memoriam of Alberto Caprara(1968–2012) 18  
  In Memoriam of Leo G. Kroon(1958–2016) 20  
  1 Simulation of Rail Operations 22  
     1.1 Introduction 22  
     1.2 Types of Simulation 23  
        1.2.1 Simulation Tools 24  
     1.3 Application Fields 26  
        1.3.1 Simulation to Calculate the Running Times 26  
        1.3.2 Simulation to Verify a Timetable 26  
        1.3.3 Simulation to Estimate Capacity 27  
        1.3.4 Simulation of Yards 28  
        1.3.5 Simulation to Support the Definition of Infrastructure Improvements 29  
        1.3.6 Simulation to Estimate the Robustness of a Timetable 29  
        1.3.7 Simulation to Evaluate the Impact of Maintenance or Construction Works 29  
        1.3.8 Simulation to Estimate Ex-ante the Punctuality of a Timetable 30  
     1.4 Setting up a Simulation Model 30  
        1.4.1 Defining the Simulation Area 31  
        1.4.2 Creating the Infrastructure Model 32  
        1.4.3 Characteristics of the Rolling Stock 32  
        1.4.4 Running and Checking the Correctness of a Simulation Model 34  
        1.4.5 Inserting the Stochastic Phenomena 35  
           1.4.5.1 Initial Delays 35  
           1.4.5.2 Dwell Times 36  
           1.4.5.3 Train Performances 37  
        1.4.6 Incidents 38  
        1.4.7 Output 39  
           1.4.7.1 Animation 39  
           1.4.7.2 Timetable Graph 39  
           1.4.7.3 Diagrams 39  
           1.4.7.4 Statistics of Occupation 40  
           1.4.7.5 Delay Statistics 40  
        1.4.8 Evaluating the Quality of a Simulation Model 40  
     1.5 Weaknesses of Simulation 41  
        1.5.1 Stochastic Nature of Inputs Not Fully Modeled 42  
        1.5.2 Dispatching 43  
        1.5.3 Effectively Modeling Seriously Delayed Trains 43  
        1.5.4 Modeling Major Disruptions 44  
     References 44  
  2 Capacity Assessment in Railway Networks 46  
     2.1 Introduction 47  
     2.2 Railway Capacity and Blocking Times 48  
        2.2.1 Blocking Times 49  
     2.3 Existing Methods in Practice 51  
        2.3.1 UIC 406 Capacity Method 51  
        2.3.2 CUI Method 52  
        2.3.3 Open Challenges 53  
     2.4 Capacity Assessment of Corridors 53  
     2.5 Capacity Assessment of Nodes 54  
        2.5.1 Max-Plus Automata Model 54  
        2.5.2 Satisfying Additional Timetable Constraints 57  
     2.6 Capacity Assessment in Networks 58  
     2.7 Conclusions and Future Developments 61  
     References 62  
  3 Aggregation Methods for Railway Network Design Based on Lifted Benders Cuts 67  
     3.1 Introduction 68  
     3.2 Basic Aggregation Scheme 71  
        3.2.1 The Aggregation Master Problem 72  
        3.2.2 Definition of the Subproblem and Graph Disaggregation 73  
        3.2.3 Properties and Implementations of the Aggregation Scheme 75  
     3.3 Integration of Routing Costs via Lifted Benders Cuts 76  
     3.4 Computational Results 81  
        3.4.1 Test Instances 81  
        3.4.2 Computational Setup 82  
        3.4.3 Results Without Routing Costs 83  
        3.4.4 Results with Routing Costs 83  
     3.5 Conclusion 91  
     References 91  
  4 Freight Train Routing 93  
     4.1 Introduction 94  
     4.2 The Freight Train Routing Problem 97  
        4.2.1 Transportation Network 97  
        4.2.2 Freight Train Demand and Objective 98  
        4.2.3 Time Slice Expanded Graph 100  
     4.3 MIP Formulation and Solution 102  
        4.3.1 MIP Formulation 102  
        4.3.2 Solving the FTRP 103  
        4.3.3 Presolving 104  
        4.3.4 Linearization 105  
     4.4 Computational Results 106  
     4.5 Conclusion 109  
     References 109  
  5 Robust Train Timetabling 112  
     5.1 Introduction 113  
     5.2 Problem Description 114  
        5.2.1 Nominal TTP 114  
           5.2.1.1 Periodic TTP 114  
           5.2.1.2 Non-periodic TTP 115  
        5.2.2 Robust TTP 116  
     5.3 Robustness in Train Timetabling 117  
        5.3.1 Stochastic Programming 117  
        5.3.2 Recoverable Robustness 120  
        5.3.3 Recovery-to-Optimality 122  
        5.3.4 Light Robustness 123  
        5.3.5 Lagrangian Robustness 125  
     5.4 Comments on the Computational Results 129  
        5.4.1 Validation Tool 129  
        5.4.2 Real-World Instances 129  
        5.4.3 Practical Considerations 130  
     5.5 Conclusions and Open Perspectives 131  
     References 132  
  6 Modern Challenges in Timetabling 135  
     6.1 Introduction 136  
     6.2 Periodic Timetabling with Multiple Periods 136  
        6.2.1 Aperiodic Timetabling 136  
        6.2.2 Periodic Timetabling 137  
        6.2.3 The PESP 138  
           6.2.3.1 Solving the PESP 139  
        6.2.4 PESP with Multiple Periods 141  
        6.2.5 Solving PESP with Multiple, Nested Periods 142  
        6.2.6 Finding Sharp Trees 145  
        6.2.7 Accelerating mPESP Instances 145  
     6.3 Delay-Robust Event Scheduling: A Mathematical Framework 146  
        6.3.1 Event Scheduling and Delay Propagation Networks 147  
        6.3.2 Delay-Recovery Robustness 149  
           6.3.2.1 The Scenario Set 152  
        6.3.3 A Real-World Study: Delay Robust Platforming 153  
           6.3.3.1 Events and Delay-Propagation Network 154  
           6.3.3.2 The Overall Delay-Robust Model and Its Solution 155  
     6.4 Conclusion 156  
     References 157  
  7 Railway Track Allocation 159  
     7.1 Introduction 160  
     7.2 On Microscopy and Macroscopy 162  
     7.3 Macroscopic Optimization Models 164  
        7.3.1 Clique Separation 166  
        7.3.2 Configuration Networks 168  
     7.4 Algorithmic Techniques for the TAP 168  
        7.4.1 Lagrangian Relaxation 169  
        7.4.2 Bundle Methods 170  
        7.4.3 Dynamic Graph Generation 171  
     7.5 Status Quo and Future Opportunities 173  
     References 175  
  8 Use of Optimization Tools for Routing in Rail Freight Transport 178  
     8.1 Introduction 179  
     8.2 Survey of the Literature 180  
     8.3 Model Formulation 181  
     8.4 Model Adaptation 184  
        8.4.1 Interlocking of Unit Trains and Single Cars 185  
        8.4.2 Hierarchy Constraints Revisited 187  
        8.4.3 Waiting Time Revisited 187  
        8.4.4 Restraint Order Acceptance 189  
        8.4.5 A Multi-Period Approach Towards Robust Planning 190  
        8.4.6 Moving Horizon 192  
        8.4.7 Less-Than-Truckload Optimization 193  
     8.5 Conclusion 194  
     References 195  
  9 Optimization of Railway Freight Shunting 197  
     9.1 Introduction 198  
        9.1.1 Classification Problems in Classification Yards 198  
        9.1.2 Short Historical Review of Classification Methods 199  
     9.2 Classification Scheme of Classification Problem Variants 202  
        9.2.1 Track Topology 203  
           9.2.1.1 Design 203  
           9.2.1.2 Length 203  
        9.2.2 Sorting Mode 203  
           9.2.2.1 Shunting 203  
           9.2.2.2 Timing of t-o-Moves 204  
           9.2.2.3 Splitting 204  
        9.2.3 Requirement for Outbound Sequence 205  
        9.2.4 Goal 205  
     9.3 Single-Stage Classification 205  
        9.3.1 Notations 207  
        9.3.2 Complexity Results 207  
           9.3.2.1 Unbounded Variants 208  
           9.3.2.2 b-Bounded Variants 212  
     9.4 Multi-Stage Classification 214  
        9.4.1 Requirements for the Outbound Sequence 215  
        9.4.2 Goals 216  
        9.4.3 Complexity Results 217  
        9.4.4 Real-World Results for BASF, Ludwigshafen, Germany 220  
        9.4.5 Real-World Results for Hallsberg, Sweden 221  
     9.5 Practical Relevance and Conclusions 222  
     References 223  
  10 Optimization of Rolling Stock Rotations 229  
     10.1 Introduction 229  
     10.2 Literature 232  
     10.3 Model via Hypergraphs 234  
     10.4 Solve via Coarse-to-Fine 239  
        10.4.1 C2F Column Generation for Linear Programs 240  
        10.4.2 Layers for Rolling Stock Rotation Optimization 244  
     10.5 Apply via Re-optimization 251  
     References 255  
  11 Railway Crew Management 258  
     11.1 Introduction 259  
     11.2 Main Concepts in Crew Management 260  
        11.2.1 Tasks 260  
        11.2.2 Duties 260  
        11.2.3 Depots 262  
        11.2.4 Rosters 262  
     11.3 Strategic Planning 263  
     11.4 Operational Planning 264  
        11.4.1 Planning for Generic Duties 265  
        11.4.2 Crew Rostering 265  
        11.4.3 Planning for Calendar Duties 266  
        11.4.4 Ultra-Short Term Rescheduling 267  
     11.5 Real-Time Operations 267  
     11.6 Optimization Models 268  
        11.6.1 Objectives 269  
        11.6.2 Constraints 269  
        11.6.3 Crew Scheduling: Model 270  
        11.6.4 Crew Scheduling: Solution Technique 271  
        11.6.5 Real-Time Crew Rescheduling: Model 272  
        11.6.6 Real-Time Crew Rescheduling: Solution Technique 274  
     11.7 Planning Support System CREWS 275  
        11.7.1 CREWS: The First Phase 275  
        11.7.2 CREWS: Stand-Alone 276  
        11.7.3 CREWS: Real-Time Dispatcher 277  
     11.8 Further Developments 277  
     References 278  
  12 Train Dispatching 280  
     12.1 Introduction 281  
        12.1.1 Background and Scope 281  
        12.1.2 Aspects of Disturbance Management in Railway Traffic Systems 282  
     12.2 Alternative Graph and Disjunctive Formulation 285  
     12.3 Algorithmic Aspects 289  
     12.4 State of Practice 291  
     References 295  
  13 Delay Propagation and Delay Management in Transportation Networks 299  
     13.1 Introduction and Motivation 300  
     13.2 Delay Propagation 302  
        13.2.1 The Event-Activity Network 302  
        13.2.2 Delay Propagation 305  
           13.2.2.1 Source Delays 305  
           13.2.2.2 Delay Propagation Along a Single Activity 305  
           13.2.2.3 Delay Propagation for a Bundle of Activities 307  
           13.2.2.4 Delay Propagation for a Delay Scenario 307  
     13.3 Models: Integer Programming Formulations and Objective Functions 308  
        13.3.1 The Basic Model: Wait-Depart Decisions 308  
        13.3.2 Adding Precedence Decisions on Tracks 310  
        13.3.3 Adding Station Capacities and Platform Re-assignment 311  
        13.3.4 Delay Management Objectives 313  
           13.3.4.1 Delay Management with Constant Weights 313  
           13.3.4.2 Delay Management with Fixed Routes 314  
           13.3.4.3 Delay Management with Re-routing 316  
     13.4 Heuristics 319  
        13.4.1 The Basic Decision: Wait or Depart? 320  
        13.4.2 Adding Precedence Decisions: Which Train Goes First? 321  
        13.4.3 Adding Decisions in Stations: Which Platform to Use? 322  
        13.4.4 Adding Decisions on Passengers Paths: Which Route to Take? 324  
           13.4.4.1 Passenger Re-routing with Constant Penalties 324  
           13.4.4.2 Passenger Re-routing with OD-Dependent Penalties 325  
     13.5 Practical Considerations and Conclusions 326  
     References 328  
  Index 332  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2019 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz