Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Microbial Fuel Cell Technology for Bioelectricity
  Großes Bild
 
Microbial Fuel Cell Technology for Bioelectricity
von: Venkataraman Sivasankar, Prabhakaran Mylsamy, Kiyoshi Omine
Springer-Verlag, 2018
ISBN: 9783319929040
320 Seiten, Download: 9765 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Dedication 5  
  Foreword 6  
  Preface 8  
  Contents 11  
  About the Editors 13  
  Chapter 1: Biologically Renewable Resources of Energy: Potentials, Progress and Barriers 15  
     1.1 Introduction 15  
        1.1.1 Energy 15  
        1.1.2 Energy Resources and Sustainable Development 16  
        1.1.3 Current Scenario of World’s Energy Usage 16  
     1.2 Renewable Energy Resources 18  
        1.2.1 Potential of Biological Energy Resources 18  
        1.2.2 Potential and Progress of Biomass Utilization as Biofuel 20  
        1.2.3 Production of Ethanol from Biomass 21  
        1.2.4 Production of Biodiesel from Biomass 24  
           1.2.4.1 Production of Biodiesel from Microalgae 24  
           1.2.4.2 Current Progress in Biodiesel Production 28  
           1.2.4.3 Challenges with the Commercialization of Biodiesel 28  
              Harvesting 29  
              Drying 29  
        1.2.5 Production of Biogas from Biomass 30  
     1.3 Barriers of Utilization of Renewable Biological Energy Resources for Fuel Production 30  
     1.4 Future Possibilities of Utilization of Renewable Biological Energy Resources for Fuel Production 31  
     1.5 Concluding Remarks 31  
     References 32  
  Chapter 2: Microbial Fuel Cells: Fundamentals, Types, Significance and Limitations 37  
     2.1 Introduction 37  
     2.2 Basic Configuration and Mechanism of MFC 39  
        2.2.1 Anode Chamber 39  
        2.2.2 Cathode Chamber 42  
        2.2.3 Separator Membrane 42  
     2.3 Mechanism of Pre-Treatment for Increased Power Output 43  
        2.3.1 Pre-Treatment of Electrode for Increased Power Output 44  
        2.3.2 Pre-Treatment of Substrate for Increased Power Output 44  
           2.3.2.1 Physical/Chemical Pre-Treatment 44  
           2.3.2.2 Biological Treatment 45  
     2.4 Classification 45  
        2.4.1 Based on Mediator 45  
        2.4.2 Based on Dependency of Microbial Nutrition 49  
           2.4.2.1 Phototrophic MFC 49  
           2.4.2.2 Heterotrophic MFC 50  
           2.4.2.3 Mixotrophic MFC 50  
        2.4.3 Based on Dependency of Light 51  
        2.4.4 Based on Dependency of Temperature 51  
        2.4.5 Based on Configuration 52  
     2.5 Proposed Application of MFC 52  
     2.6 Barriers and Challenges in MFC 54  
     2.7 Conclusion 55  
     References 55  
  Chapter 3: Plant Microbial Fuel Cell Technology: Developments and Limitations 63  
     3.1 Introduction 63  
     3.2 General Architecture of a Plant Microbial Fuel Cell 64  
     3.3 Anode Materials for Plant Microbial Fuel Cells 65  
     3.4 Cathode Materials for Plant Microbial Fuel Cells 72  
     3.5 Plants Used in MFC Systems 72  
     3.6 Microbial Community Found in Plant Microbial Fuel Cells 73  
     3.7 Improvements, Limitations, and Future Research for Plant Microbial Fuel Cells 73  
     References 75  
  Chapter 4: Current Advances in Paddy Plant Microbial Fuel Cells 80  
     4.1 Introduction 80  
     4.2 Test Materials and Methods 81  
     4.3 Results and Discussion 85  
        4.3.1 Experiment Using Bucket of 13 L with Carbon Fiber and Activated Bamboo Charcoal as Electrodes 85  
        4.3.2 Experiment Using PET Bottle of 500 mL with Activated Bamboo Charcoal for Anode and Cathode 86  
     4.4 Conclusions 90  
     References 92  
  Chapter 5: Algal Microbial Fuel Cells—Nature’s Perpetual Energy Resource 94  
     5.1 Current Scenario 94  
        5.1.1 Microbial Fuel Cells (MFCs) 95  
        5.1.2 Algae 96  
        5.1.3 Experimental Setup of MFCs 97  
     5.2 Electrode Materials 98  
        5.2.1 Properties of Electrode Materials 98  
     5.3 Materials Used for the Anode 99  
     5.4 Materials Used for the Cathode 100  
     5.5 Membranes 101  
     5.6 Integration of Algae in MFCs 101  
     5.7 Different Types of PMFC Configurations 102  
     5.8 Coupled PMFCs 103  
     5.9 Single-Chambered PMFCs 105  
     5.10 Dual-Chambered PMFCs 106  
     5.11 Sediment MFCs (SMFCs) 112  
     5.12 Twelve-Reactor Algal Fuel Cells 113  
     5.13 Nine-Cascade Algal Fuel Cells 114  
     5.14 Anode Assistance with Phototrophic Microorganisms 115  
     5.15 Anode-Assisted Electrochemical Catalysis 115  
     5.16 Substrates as End Products 117  
     5.17 Cathode Assistance with Phototrophic Microorganisms 117  
     5.18 Oxygen Production 117  
     5.19 Carbon Dioxide Utilization 118  
     5.20 Production of Biomass 119  
     5.21 Treatment of Wastewater 120  
     5.22 Illumination Effects 120  
     5.23 Challenges and Prospects 121  
     5.24 Future Perspectives of PMFCs 122  
     5.25 Conclusion 123  
     References 124  
  Chapter 6: Fungal Fuel Cells: Nature’s Perpetual Energy Resource 130  
     6.1 Microbial Fuel Cell: Brief Introduction 130  
     6.2 Introduction to Fungal Microbial Fuel Cell 131  
     6.3 Microbial Fuel Cell with Fungal Biofilm as Bio-anode 132  
     6.4 Biodegradation Using Fungal MFC Yielding By-Products 134  
     6.5 Fungi as Biocatalyst for Air-Cathode MFC 138  
     6.6 Fungal Enzyme-Based MFC 139  
     6.7 Microbial Fuel Cell with Fungal Biofilm as Bio-cathode 140  
     6.8 Fungi-Bacteria-Assisted MFC for Bioenergy Production 142  
     6.9 Liquid Fungal Cultures as Anolyte and Catholyte in MFC 144  
     6.10 Fungal Microbial Fuel Cell for Bioenergy Production 144  
     6.11 Future Perspectives and Challenges 145  
     6.12 Conclusion 146  
     References 146  
  Chapter 7: Bioelectricity Generation in Soil Microbial Fuel Cells Using Organic Waste 149  
     7.1 Introduction 149  
     7.2 Test Materials and Methods 150  
     7.3 Results and Discussion 151  
        7.3.1 Influence of Leaf Mould 151  
        7.3.2 Influence of Photosynthetic Bacteria 153  
        7.3.3 Influences of Rice Bran 154  
        7.3.4 Influences of Aerobic Condition 155  
        7.3.5 Influence Due to the Distance Between the Electrodes 156  
        7.3.6 Influence of Anode Modified with Iron Winding 158  
        7.3.7 Power Generation 160  
     7.4 Conclusions 161  
     References 161  
  Chapter 8: Microbial Fuel Cell Research Using Animal Waste: A Feebly-Explored Area to Others 163  
     8.1 Introduction 163  
        8.1.1 Microbial Fuel Cells in Waste Management 164  
     8.2 Energy Production from Various Sources 165  
        8.2.1 Sewage Sludge 166  
        8.2.2 Domestic Waste 167  
           8.2.2.1 Kitchen and Bamboo Waste 169  
        8.2.3 Industrial Waste 169  
           8.2.3.1 Winery Wastewater 170  
           8.2.3.2 Brewery Wastewater 170  
           8.2.3.3 Food Industry 170  
           8.2.3.4 Potato-Processing Wastewater 171  
           8.2.3.5 Dairy Industry 171  
        8.2.4 Animal Waste 172  
           8.2.4.1 Slaughterhouse Wastewater 172  
           8.2.4.2 Swine Wastewater Treatment 173  
        8.2.5 Agrowaste Industries 174  
        8.2.6 Marine Sediments 174  
     8.3 Rumen Waste in MFC 175  
        8.3.1 Rumen Fluid as a Cheap Energy Source 175  
           8.3.1.1 Pros and Cons of Using Animal Waste 175  
     8.4 Conclusion 176  
     References 176  
  Chapter 9: Electricigens: Role and Prominence in Microbial Fuel Cell Performance 181  
     9.1 Introduction 181  
     9.2 Electricigens 182  
        9.2.1 Electron Transport Mechanism 182  
        9.2.2 Etymology of Microbes in Microbial Fuel Cell 182  
     9.3 Pioneering Microbes 185  
        9.3.1 Geobacter sp. and Shewanella sp. 186  
        9.3.2 Pseudomonas sp. 186  
        9.3.3  Clostridium sp. 187  
        9.3.4 Enterobacter Species 187  
        9.3.5 Aeromonas Species 188  
        9.3.6 Saccharomyces cerevisiae 188  
        9.3.7 Other Microbes 189  
     9.4 Characterization of Biofilm 189  
        9.4.1 Scanning Electron Microscopy 189  
        9.4.2 Atomic Force Spectroscopy 190  
        9.4.3 Confocal Scanning Laser Microscopy 191  
        9.4.4 Thermogravimetric Analysis 191  
        9.4.5 DGGE and Sequence Analysis 192  
     9.5 Summary and Conclusion 192  
     References 193  
  Chapter 10: Rumen Fluid Microbes for Bioelectricity Production: A Novel Approach 198  
     10.1 Introduction 198  
        10.1.1 Optimization of Parameters for the Increased Electricity Production by the Microbial Fuel Cell Using Rumen Fluid 199  
           10.1.1.1 Scale-Up of MFC with Rumen Fluid 201  
        10.1.2 Comparative Analysis of Power Production of Pure, Co-culture, and Mixed Culture in Microbial Fuel Cell 202  
           10.1.2.1 Bacterial Strains 202  
           10.1.2.2 Brief Pure Culture Study in Terms of Voltage Production and Cyclic Voltammogram 203  
           10.1.2.3 Co-culture and Mixed Culture Studies 206  
           10.1.2.4 SEM Analysis 207  
           10.1.2.5 Production of Bioelectricity in MFC by Pseudomonas fragi DRR-2 (Psychrophilic) Isolated from Goat Rumen Fluid 208  
           10.1.2.6 Growth Curve and Protein Content of Pseudomonas fragi DRR-2 at Different Temperatures 209  
              Power Production of the Bacterium Under Different Temperatures Using Salt Bridge and Nafion 117 209  
              Cyclic Voltammogram of the Strain in Low Temperatures 210  
        10.1.3 Performance of Paracoccus homiensis DRR-3 in Microbial Fuel Cell with Membranes 210  
           10.1.3.1 Power Production of Paracoccus homiensis DRR-3 with Nafion 117 in MFC 210  
           10.1.3.2 Power Production of Paracoccus homiensis DRR-3 with PVDF and PCZ in MFC 212  
        10.1.4 Membranes, Their Performance, Electrochemical Analysis in MFC 213  
           10.1.4.1 Cyclic Voltammogram of P. homiensis Using Membranes 213  
           10.1.4.2 Impedance Spectra of P. homiensis Using Membranes 213  
        10.1.5 Applications of Rumen Fluid MFC 215  
     10.2 Summary and Conclusion 216  
     References 217  
  Chapter 11: Advances in Concurrent Bioelectricity Generation and Bioremediation Through Microbial Fuel Cells 221  
     11.1 Introduction 221  
     11.2 Improvement in the Microbial Fuel Cell Technology for Bioremediation 222  
     11.3 Design of Microbial Fuel Cell 223  
     11.4 Electrode Materials 224  
        11.4.1 Anode Materials 225  
           11.4.1.1 Role of Anode in Bioremediation 228  
        11.4.2 Cathode Materials 228  
           11.4.2.1 Role of Cathode in Bioremediation 231  
        11.4.3 Membrane Material 231  
     11.5 Types of Waste Materials Used as Substrates in MFC 231  
     11.6 Types of Microbial Fuel Cell for Bioremediation of Pollutants 235  
        11.6.1 Anaerobic Microbial Fuel Cell (ANMFC) 235  
        11.6.2 Sediment Microbial Fuel Cell (SMFC) 235  
        11.6.3 Benthic Microbial Fuel Cells (BMFC) 236  
        11.6.4 Enzyme-Based Microbial Fuel Cells (EBC) 236  
        11.6.5 Air-Breathing Cathode-Based Microbial Fuel Cells (ABC-MFC) 237  
        11.6.6 Constructed Wetland Microbial Fuel Cells (CW-MFC) 238  
        11.6.7 Thermophilic Microbial Fuel Cells (TMFC) 238  
     11.7 Commercial Application of MFC and Economic Feasibility 239  
     11.8 Future Prospects and Directions 239  
     References 240  
  Chapter 12: Microbial Desalination Cells: A Boon for Future Generations 250  
     12.1 Introduction 250  
        12.1.1 Microbial Desalination Cell 251  
           12.1.1.1 Materials: Electrodes, Anolyte, Separating Membrane 252  
           12.1.1.2 Substrate/Anolyte/Catholyte 252  
        12.1.2 MDC Designs 254  
           12.1.2.1 Biocathode MDC 254  
           12.1.2.2 Photosynthetic MDC 254  
           12.1.2.3 Stacked MDC 255  
           12.1.2.4 Supercapacitive MDC 255  
        12.1.3 Pros and Cons of MDC 255  
        12.1.4 Future of MDC 256  
     12.2 Summary and Conclusion 256  
     References 256  
  Chapter 13: The Performance of Microbial Fuel Cells in Field Trials from a Global Perspective 259  
     13.1 Microbial Fuel Cells (MFC): A Sustainable Solution for Energy Demand 259  
     13.2 Why Microbial Fuel Cells (MFCs)? 260  
     13.3 From Laboratory to Pilot Scale: In Nutshell 261  
     13.4 Qualities of MFCs 262  
     13.5 Source of Green Energy 263  
     13.6 Generating Power While Treating Wastes 263  
     13.7 Reactor Design for Pilot-Scale Process 265  
        13.7.1 Single-Chamber MFCs 266  
        13.7.2 Two-Chamber MFCs 268  
        13.7.3 Vertical or Upflow Chamber MFCs 269  
        13.7.4 Stacked MFCs 270  
        13.7.5 Flat-Plate Microbial Fuel Cells (FPMFCs) 273  
     13.8 Field Trials of MFCs 275  
        13.8.1 Application of MFC for Wastewater Treatment 275  
        13.8.2 Constructed Wetlands 276  
        13.8.3 Small Island 277  
        13.8.4 Domestic Wastewater 279  
        13.8.5 Brewery and Winery Industries 280  
        13.8.6 Agro-Food and Dairy Industries 281  
     13.9 Problems Associated with Pilot-Scale Studies 282  
     13.10 Solutions at Laboratory Level 282  
     13.11 Future Perspectives 285  
     References 285  
  Chapter 14: Future Perspectives on Cost-Effective Microbial Fuel Cells in Rural Areas 291  
     14.1 Introduction 291  
     14.2 MFC and its Types (at Pilot Scale) 292  
        14.2.1 Benthic MFC 295  
        14.2.2 Submersible MFC 296  
        14.2.3 Photosynthetic (Plant and Algal) MFC 296  
        14.2.4 Stacked and Multi-electrode MFC 297  
        14.2.5 Other Hybrid MFCs 298  
     14.3 Cost-Effective Resources for MFC Technology 299  
     14.4 Scaling Up for Commercialization 300  
        14.4.1 Enhanced Power Generation 300  
        14.4.2 Low Input Costs 301  
        14.4.3 Long-term Stability 301  
        14.4.4 Power Output Management 302  
     14.5 Integrated Centralized MFC System 302  
     14.6 Implementation in Rural Areas 303  
        14.6.1 Loan from Banks and Easy Return Agreement 305  
        14.6.2 Government Schemes and Subsidies 305  
     14.7 Conclusion 306  
     References 306  
  Correction to: Future Perspectives on Cost-Effective Microbial Fuel Cells in Rural Areas 311  
  Index 312  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz