Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Analytical Methods for Energy Diversity and Security - Portfolio Optimization in the Energy Sector: A Tribute to the work of Dr. Shimon Awerbuch
  Großes Bild
 
Analytical Methods for Energy Diversity and Security - Portfolio Optimization in the Energy Sector: A Tribute to the work of Dr. Shimon Awerbuch
von: Morgan Bazilian, Fabien Roques (Eds.)
Elsevier Trade Monographs, 2008
ISBN: 9780080915319
367 Seiten, Download: 2091 KB
 
Format: EPUB, PDF
geeignet für: geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Apple iPod touch, iPhone und Android Smartphones Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Front Cover 1  
  Analytical Methods for Energy Diversity and Security 4  
  Copyright Page 5  
  Contents 6  
  Preface 14  
  Foreword 16  
  Foreword 2 18  
  Reader's Guide 20  
  Introduction: Analytical Approaches to Quantify and Value Fuel Mix Diversity 26  
     1 Introduction 26  
     2 Defining the diversity of the electricity system 27  
        2.1 Diversity and resilience to supply shocks 27  
        2.2 Diversity reduces the macroeconomic sensitivity to oil and gas prices 29  
     3 Quantifying and valuing the benefits of diversity 32  
        3.1 Quantifying fuel mix diversity 32  
        3.2 From quantification to valuation of fuel mix diversity 34  
           3.2.1 Mean-variance portfolio theory 35  
           3.2.2 Dynamic valuation approaches: the option value of diversity 38  
     4 Conclusions 41  
     References 42  
  Part I: Assessing Risks, Costs and Fuel Mix Diversity for Electric Utilities 44  
     Chapter 1 Diversity and Sustainable Energy Transitions: Multicriteria Diversity Analysis of Electricity Portfolios 46  
        1.1 Diversity, security, sustainability and wider energy policy 46  
        1.2 General properties of energy diversity: variety, balance and disparity 51  
        1.3 Aggregating, accommodating and articulating different aspects of energy diversity 56  
        1.4 A novel diversity heuristic for strategic appraisal of energy portfolios 62  
        1.5 Articulating energy diversity with other aspects of strategic performance 64  
        1.6 Conclusion 68  
        References 69  
     Chapter 2 The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytical Contributions from Economic and Finance Theory 74  
        2.1 Introduction 74  
        2.2 Renewable energy reduces exposure to natural gas price risk 77  
           2.2.1 Methodology 78  
           2.2.2 Empirical findings of a premium 79  
           2.2.3 Potential explanations for empirical premiums 81  
           2.2.4 Implications 89  
        2.3 Renewable energy reduces natural gas prices 89  
           2.3.1 A cursory review of economic theory 90  
           2.3.2 Review of previous studies 92  
           2.3.3 Summary of implied inverse price elasticities of supply 97  
           2.3.4 Benchmarking elasticities against other models and empirical estimates 98  
        2.4 Conclusions 99  
        References 100  
     Chapter 3 Using Portfolio Theory to Value Power Generation Investments 104  
        3.1 Introduction 104  
        3.2 Capturing risk in power investment valuation techniques 105  
        3.3 Applying portfolio optimization to power investment choices 107  
        3.4 Conclusion 111  
        References 111  
     Chapter 4 Use of Real Options as a Policy-Analysis Tool 112  
        4.1 Relationship between portfolio theory and real options theory 112  
        4.2 Electricity price risk 115  
        4.3 Evaluating risk using real options 117  
           4.3.1 Toward an intuitive understanding of real options 118  
           4.3.2 Mathematical formulation 120  
        4.4 Case study: CO[sub(2)] and fuel price risks 121  
        4.5 Conclusions on the benefits and limitations of real options 124  
        References 126  
  Part II: Applying Portfolio Theory to Identify Optimal Power Generation Portfolios 128  
     Chapter 5 Efficient Electricity Generating Portfolios for Europe: Maximizing Energy Security and Climate Change Mitigation 130  
        5.1 Introduction 131  
        5.2 Data needed for computing optimal electricity generating portfolios 131  
           5.2.1 Technology generating cost 132  
           5.2.2 Technology risk estimates 133  
           5.2.3 Correlation coefficients 135  
           5.2.4 Total technology cost and risk 136  
        5.3 Portfolio optimization of EU electricity generating mix 139  
           5.3.1 Efficient multitechnology electricity portfolios: an illustration 139  
           5.3.2 Efficient multitechnology electricity portfolios for 2020: results 140  
           5.3.3 A summary of key results 146  
        5.4 An eclectic view on factors influencing optimal electricity mixes 149  
           5.4.1 The role of nuclear power 149  
           5.4.2 Efficient electricity portfolios that minimize CO[sub(2)] emissions 150  
           5.4.3 The effect of upper limits on technology shares 150  
           5.4.4 The effect of pricing CO[sub(2)] emissions 151  
        5.5 Summary and conclusions 152  
        References 154  
        Further reading 155  
        Appendix 158  
     Chapter 6 Portfolio Analysis of the Future Dutch Generating Mix 160  
        6.1 Introduction 161  
        6.2 Theoretical framework 161  
        6.3 The Dutch generating mix in 2030 165  
           6.3.1 The Strong Europe (SE) scenario 166  
           6.3.2 The Global Economy (GE) scenario 169  
        6.4 Policy implications 173  
        6.5 Conclusions 175  
        References 178  
        Appendix A: Input assumptions 178  
        Appendix B: Technology characteristics 180  
     Chapter 7 The Role of Wind Generation in Enhancing Scotland's Energy Diversity and Security: A Mean-Variance Portfolio Optimization of Scotland's Generating Mix 182  
        7.1 Least-cost versus portfolio-based approaches in generation planning 183  
           7.1.1 Portfolio-based planning for electricity generation 184  
        7.2 Portfolio optimization of Scotland's generating mix 185  
           7.2.1 The base case 186  
           7.2.2 Case II: accelerated (minimum 10%) offshore wind deployment 188  
           7.2.3 Case III: higher 'current outlook' natural gas prices 189  
        7.3 Conclusions: implications for Scotland's capacity planning 191  
        References 193  
        Further reading 193  
     Chapter 8 Generation Portfolio Analysis for a Carbon Constrained and Uncertain Future 194  
        8.1 Introduction 195  
        8.2 Generation options and portfolio optimization 196  
           8.2.1 Generator inputs 196  
           8.2.2 Fuel prices 196  
           8.2.3 Generation adequacy 196  
           8.2.4 Least-cost portfolio optimization 198  
        8.3 Carbon costs and the role of wind generation 198  
           8.3.1 Least-cost generation portfolio results 198  
           8.3.2 Emissions 200  
           8.3.3 Role of wind generation in portfolios 201  
           8.3.4 Effect of increasing wind capacity 201  
        8.4 Uncertainty and portfolio diversification 202  
           8.4.1 Background 202  
           8.4.2 Diversity 203  
           8.4.3 All-Ireland portfolio illustration 204  
           8.4.4 Insuring diversity in generation portfolios 206  
        8.5 Conclusions 206  
        References 207  
     Chapter 9 The Economics of Renewable Resource Credits 210  
        9.1 Introduction 210  
        9.2 Tradable green certificates in the electricity market 214  
           9.2.1 The consumer's problem 214  
           9.2.2 Market demand 217  
           9.2.3 Supply and market equilibrium 218  
           9.2.4 Effects of tradable green certificates 218  
        9.3 Government intervention in the green power market 219  
           9.3.1 The goal of environmental policy 219  
           9.3.2 Government intervention with a fixed budget 220  
           9.3.3 Traditional producer and consumer subsidies financed from general revenue 220  
           9.3.4 Government direct purchase of tradable green certificates, financed from general revenue 221  
           9.3.5 Comparison of policies 222  
        9.4 Institutional considerations and discussion 223  
           9.4.1 Alternative forms of the tradable green certificate market 223  
           9.4.2 Maintaining public trust 224  
           9.4.3 Efficiency issues 225  
        References 227  
        Appendix: Comparative statics results 228  
  Part III: Frontier Applications of the Mean-Variance Optimization Model for Electric Utilities Planning 234  
     Chapter 10 Efficient and Secure Power for the USA and Switzerland 236  
        10.1 Introduction 237  
        10.2 Literature review 238  
        10.3 Methodology 240  
           10.3.1 Real asset portfolio estimation 240  
           10.3.2 Seemingly unrelated regression estimation 243  
           10.3.3 Shannon–Wiener index 244  
           10.3.4 Herfindahl–Hirschman index 245  
        10.4 Efficient US and Swiss power generation frontiers in 2003 245  
           10.4.1 The data 245  
           10.4.2 Actual mix of power generation as of 2003 248  
           10.4.3 SURE results for the USA and Switzerland 248  
           10.4.4 Efficient power generation frontiers 251  
           10.4.5 Supply security 256  
        10.5 Conclusions 259  
        References 260  
     Chapter 11 Portfolio Optimization and Utilities' Investments in Liberalized Power Markets 262  
        11.1 Introduction 263  
        11.2 Diversification in liberalized electricity markets 264  
           11.2.1 Fuel mix diversification and corporate strategy 264  
           11.2.2 The lack of financial risk management instruments in the electricity industry 265  
           11.2.3 From macroeconomic to microeconomic diversification incentives 266  
           11.2.4 Technology diversification and the consumer interest 268  
        11.3 Using mean-variance portfolio theory to identify optimal generation portfolios 270  
           11.3.1 A two-step simulation framework with portfolio optimization 271  
           11.3.2 Net present value Monte Carlo simulation results 275  
        11.4 Optimal base-load generation portfolios in liberalized electricity markets 278  
           11.4.1 The impact of correlation between fuel, carbon dioxide and electricity prices 279  
           11.4.2 The impact of long-term fixed-price power purchase agreements on optimal generation portfolios 281  
           11.4.3 The impact of the cost of capital on optimal generation portfolios 284  
        11.5 Conclusion and policy implications 285  
        References 288  
     Chapter 12 Risk Management in a Competitive Electricity Market 290  
        12.1 Introduction 290  
        12.2 Electricity markets and pricing systems 292  
        12.3 Overview of the framework 293  
        12.4 Risk control 294  
           12.4.1 General case: risk-control strategy for a normal conservative Genco 294  
           12.4.2 Discussion: risk-control strategies for more conservative Gencos and less conservative Gencos 297  
        12.5 Risk assessment 297  
           12.5.1 Risk assessment technique 297  
           12.5.2 Application of value at risk in trading scheduling 298  
        12.6 Example 299  
           12.6.1 Profit characteristics 299  
           12.6.2 Simulation results 301  
        12.7 Conclusion 304  
        References 305  
     Chapter 13 Application of Mean-Variance Analysis to Locational Value of Generation Assets 306  
        13.1 Introduction 306  
        13.2 Simulation methodology 308  
           13.2.1 Load simulation scenario 309  
           13.2.2 Linear programming optimal power flow and locational marginal price 309  
           13.2.3 Constructing the efficient frontier and finding optimum investment buses 310  
           13.2.4 Portfolio selection 310  
        13.3 Simulation results 311  
        13.4 Adding generators 312  
        13.5 Optimal investment strategy 313  
        13.6 Conclusion 315  
        References 316  
        Appendix A: Formal derivation of the portfolio frontier 316  
        Appendix B 317  
     Chapter 14 Risk, Embodied Technical Change and Irreversible Investment Decisions in UK Electricity Production: An Optimum Technology Portfolio Approach 318  
        14.1 Introduction 319  
        14.2 Literature review 320  
        14.3 The vintage portfolio model 324  
           14.3.1 Model outline 324  
           14.3.2 Vintage portfolios versus standard mean-variance portfolios 326  
           14.3.3 Modelling details 327  
        14.4 Simulation results 332  
           14.4.1 Technology characterization 332  
           14.4.2 Simulation runs 334  
           14.4.3 Fuel price variance 342  
           14.4.4 Technological variance 342  
        14.5 Summary and conclusion 344  
        References 345  
  Index 348  
     A 348  
     B 348  
     C 348  
     D 350  
     E 351  
     F 351  
     G 352  
     H 353  
     I 353  
     J 353  
     K 353  
     L 353  
     M 353  
     N 354  
     O 354  
     P 355  
     Q 356  
     R 356  
     S 357  
     T 357  
     U 358  
     V 358  
     W 358  
  Shimon Awerbuch Biography 360  
  Charity 362  
  About the Editors 364  
  Color Plates 366  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz