Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Datenanalyse mit Python - Auswertung von Daten mit Pandas, NumPy und IPython
  Großes Bild
 
Datenanalyse mit Python - Auswertung von Daten mit Pandas, NumPy und IPython
von: Wes McKinney
O'Reilly Verlag, 2018
ISBN: 9783960102137
542 Seiten, Download: 11249 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: BA (eingeschränkt parallel verfügbar)

 

 
eBook anfordern
Kurzinformation

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

Wes McKinney ist Softwareentwickler und Unternehmer und lebt in New York. Nach dem Abschluss seines Mathematikstudiums am MIT im Jahre 2007 arbeitete er im Bereich der quantitativen Finanzen bei AQR Capital Management in Greenwich, Connecticut. Frustriert von umständlichen Datenanalysewerkzeugen lernte er Python und startete das pandas-Projekt. Inzwischen ist er ein aktives Mitglied der wissenschaftlichen Python-Community und ein Verfechter des Einsatzes von Python in Datenanalyse, Finanzen und Statistikanwendungen.Später war Wes Mitbegründer und CEO von DataPad, das im Jahre 2014 von Cloudera übernommen wurde. Seitdem befasst er sich auch mit der Big-Data-Technologie und ist Teil der Projektmanagementkomitees für die Projekte Apache Arrow und Apache Parquet in der Apache Software Foundation. 2016 ist er zu Two Sigma Investments in New York City gewechselt, wo er weiterhin daran arbeitet, die Datenanalyse durch Open-Source-Software schneller und einfacher zu machen.



nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2019 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz