Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Human Walking in Virtual Environments - Perception, Technology, and Applications
  Großes Bild
 
Human Walking in Virtual Environments - Perception, Technology, and Applications
von: Frank Steinicke, Yon Visell, Jennifer Campos, Anatole Lécuyer
Springer-Verlag, 2013
ISBN: 9781441984326
402 Seiten, Download: 11347 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Foreword 5  
  Contents 9  
  Part I Perception 11  
  1 Sensory Contributions to Spatial Knowledge of Real and Virtual Environments 12  
     1.1 External Sensory Information 14  
     1.2 Internal Sensory Information 16  
     1.3 Efferent Sources of Information 17  
     1.4 Relative Influence of External and Internal Sensory Information 19  
        1.4.1 Sensory Contributions in the Real World 19  
        1.4.2 Sensory Contributions in Virtual Environments 21  
     1.5 Conclusion 30  
     References 31  
  2 Perceptual and Cognitive Factors for Self-Motion Simulation in Virtual Environments: How Can Self-Motion Illusions (``Vection'') Be Utilized? 36  
     2.1 Introduction: The Challenge of Walking in VR 36  
     2.2 Visually Induced Self-Motion Illusions 38  
        2.2.1 Circular Vection 39  
        2.2.2 Linear Vection 40  
     2.3 Self-Motion Sensation from Walking 41  
     2.4 Interaction of Walking and Other Modalities for Vection 42  
        2.4.1 Walking and Auditory Cues 42  
        2.4.2 Walking and Visual Cues 42  
     2.5 Further Cross-Modal Effects on Self-Motion Perception in VR 45  
     2.6 Simulator Sickness and Vection in VR 47  
     2.7 Perceptual Versus Cognitive Contributions to Vection 47  
        2.7.1 Lower-Level and Bottom-Up Contributions to Vection 47  
        2.7.2 Cognitive and Top-Down Contributions to Vection 49  
     2.8 Does Vection Improve Spatial Updating and Perspective Switches? 52  
     2.9 Conclusions and Conceptual Framework 53  
     2.10 Outlook 56  
     References 57  
  3 Biomechanics of Walking in Real World: Naturalness we Wish to Reach in Virtual Reality 64  
     3.1 Introduction 64  
     3.2 Kinematics of Human Walking 65  
        3.2.1 Global Description 66  
        3.2.2 Joint Kinematics 71  
     3.3 Dynamics of Human Walking 73  
        3.3.1 Forces and Torques Description 74  
        3.3.2 Energetics of Human Walking 76  
        3.3.3 Balance 78  
     3.4 Comparison Between Ground and Treadmill Walking 80  
     3.5 Conclusion 81  
     References 82  
  4 Affordance Perception and the Visual Control of Locomotion 87  
     4.1 Introduction 87  
     4.2 Taking Body Dimensions and Movement Capabilities into Account 88  
        4.2.1 Theoretical Approach 88  
        4.2.2 Affordance Perception and the Control of Locomotion 89  
        4.2.3 Eyeheight-Scaled Information 89  
     4.3 Perceiving Body-Scaled Affordances 91  
     4.4 Perceiving Action-Scaled Affordances 94  
        4.4.1 The Information-Based Approach 94  
     4.5 Testing the Information-Based Approach 95  
        4.5.1 An Alternative Account 97  
     4.6 Testing the Affordance-Based Approach 99  
     4.7 Extensions of the Affordance-Based Approach 101  
     4.8 Affordance Perception and the Continuous Control of Locomotion 102  
     4.9 Conclusions 103  
     References 105  
  5 The Effect of Translational and Rotational Body-Based Information on Navigation 107  
     5.1 Introduction 107  
     5.2 Applications of Virtual Environments 108  
     5.3 Ecological Validity 109  
     5.4 The Effect of Body-Based Information 110  
        5.4.1 Review Framework 111  
        5.4.2 Studies Investigating the Effect of Body-Based Information 113  
     5.5 Summary and Conclusions for VE Applications 116  
        5.5.1 Model-Scale Environments 116  
        5.5.2 Small-Scale Environments 117  
        5.5.3 Large-Scale Environments 118  
        5.5.4 Further Research 118  
     References 119  
  6 Enabling Unconstrained Omnidirectional Walking Through Virtual Environments: An Overview of the CyberWalk Project 121  
     6.1 Introduction 122  
     6.2 Gait and Biomechanics 124  
        6.2.1 Natural Unconstrained Walking 124  
        6.2.2 Overground Versus Treadmill Walking 128  
        6.2.3 Potential Implications for CyberWalk 132  
     6.3 Multisensory Self-Motion Perception 132  
        6.3.1 Multisensory Nature of Walking 133  
        6.3.2 Integration of Vestibular and Proprioceptive Information in Human Locomotion 135  
        6.3.3 ``Vection'' from Walking 139  
        6.3.4 Potential Implications for CyberWalk 140  
     6.4 Large Scale Navigation 141  
        6.4.1 Potential Implications for CyberWalk 144  
     6.5 Putting it All Together: The CyberWalk Platform 144  
     References 147  
  Part II Technologies 153  
  7 Displays and Interaction for Virtual Travel 154  
     7.1 Introduction 154  
     7.2 Display Systems 156  
     7.3 Interaction Devices 161  
     7.4 Travel Techniques 173  
        7.4.1 Travel as a Control Task 173  
        7.4.2 Direct Self Motion Control Techniques 177  
        7.4.3 Indirect Self Motion Control Techniques 178  
        7.4.4 Scene Motion Techniques 178  
        7.4.5 Other Control Inputs 179  
     7.5 Conclusion 179  
     References 180  
  8 Sensing Human Walking: Algorithms and Techniques for Extracting and Modeling Locomotion 183  
     8.1 Introduction 183  
     8.2 Sensing and Interpreting Global Gait Parameters 184  
        8.2.1 Step Length and Frequency 184  
        8.2.2 Curvature and Non-linear Walking 185  
        8.2.3 Gait Asymmetry and Regularity 189  
     8.3 Joint Angles, Torques and Muscle Activity 189  
        8.3.1 Measuring Joint Displacements 189  
        8.3.2 Measuring Joint Angles 192  
        8.3.3 Estimating Joint Torques with Inverse Dynamics 194  
     8.4 Isolated Segments 194  
     8.5 Global System and Controllers 195  
     8.6 Conclusion About Inverse Dynamic Approaches 196  
        8.6.1 Measuring or Estimating Muscle Activities 197  
     8.7 Conclusion 201  
     References 201  
  9 Locomotion Interfaces 204  
     9.1 Introduction 204  
     9.2 Sliding Shoes 206  
        9.2.1 Virtual Perambulator 206  
        9.2.2 Powered Shoes 207  
        9.2.3 String Walker 208  
        9.2.4 Evacuation Simulator Using the Virtual Perambulator 209  
     9.3 Treadmills 210  
        9.3.1 Related Works in Treadmill-Based Locomotion Interface 210  
        9.3.2 Torus Treadmill 211  
        9.3.3 Control Algorithm of the Torus Treadmill 213  
        9.3.4 Effects of Walking on the Torus Treadmill 214  
        9.3.5 Limitation of Torus Treadmill 214  
     9.4 Foot Pad 215  
        9.4.1 Related Works in Foot-Pad-Based Locomotion Interface 215  
        9.4.2 Gait Master 215  
        9.4.3 Control Algorithm of the GaitMaster 218  
        9.4.4 GaitMater for Walking Rehabilitation 219  
     9.5 Robotic Tiles 220  
        9.5.1 The CirculaFloor 220  
        9.5.2 User Study of the Robot Tile Approach 220  
     9.6 Conclusion 223  
     References 223  
  10 Implementing Walking in Virtual Environments 225  
     10.1 Introduction 225  
     10.2 Virtual Reality Workspaces 227  
     10.3 Isometric Virtual Walking 229  
        10.3.1 One-to-One Mappings 229  
        10.3.2 Reference Coordinates 230  
        10.3.3 Virtual Traveling 231  
     10.4 Nonisometric Virtual Walking 231  
        10.4.1 User-Centric Coordinates 232  
        10.4.2 Scaling Self-Motions 234  
        10.4.3 Redirected Walking 237  
     10.5 Conclusion 241  
     References 242  
  11 Stepping-Driven Locomotion Interfaces 245  
     11.1 Designing Stepping-Driven Locomotion for Virtual Environment Systems 245  
     11.2 Walking-in-Place Interfaces 248  
        11.2.1 Setting Speed: Interpreting Stepping Gestures 248  
        11.2.2 Setting Direction for Walking-in-Place 253  
        11.2.3 The Future for Walking-in-Place Interfaces 255  
     11.3 Real-Walking Interfaces 256  
        11.3.1 Manipulating Speed 256  
        11.3.2 Manipulating Direction 258  
        11.3.3 Reorientation Techniques 262  
        11.3.4 The Future for Real-Walking Interfaces for IVE Systems 264  
     References 264  
  12 Multimodal Rendering of Walking Over Virtual Grounds 267  
     12.1 Introduction 268  
     12.2 Auditory Rendering 269  
        12.2.1 Introduction 269  
        12.2.2 Footstep Sound Synthesis 271  
        12.2.3 Walking Sounds and Soundscape Reproduction 276  
        12.2.4 Footstep Sound Design Toolkits 278  
     12.3 From Haptic to Multimodal Rendering 279  
        12.3.1 Introduction 279  
        12.3.2 Touch Sensation in the Feet 282  
        12.3.3 Multimodal Displays 285  
        12.3.4 Display Configurations 286  
        12.3.5 Interactive Scenarios 290  
     12.4 Conclusion 294  
     References 294  
  Part III Applications and Interactive Techniques 300  
  13 Displacements in Virtual Reality for Sports Performance Analysis 301  
     13.1 Introduction 301  
        13.1.1 Why Virtual Reality for Sports? 302  
        13.1.2 Requirements for Using Virtual Reality for Sports 306  
        13.1.3 Some Applications of Virtual Reality for Sports 307  
     13.2 Case Study 1: Deceptive Movements in Rugby 308  
        13.2.1 Setup 308  
        13.2.2 Method 309  
        13.2.3 Results 310  
        13.2.4 Discussion 310  
     13.3 Case Study 2: Wall Configuration for Soccer Free Kicks 312  
        13.3.1 Setup 313  
        13.3.2 Methods 314  
        13.3.3 Results 315  
        13.3.4 Discussion 316  
     13.4 Conclusion 316  
     References 317  
  14 Redirected Walking in Mixed Reality Training Applications 321  
     14.1 Locomotion in Virtual Environments 322  
     14.2 Redirected Walking 323  
     14.3 Practical Considerations for Training Environments 324  
        14.3.1 Impact of Redirection on Spatial Orientation 324  
        14.3.2 Augmenting Effectiveness of Redirected Walking 325  
        14.3.3 Designing Experiences for Redirected Walking 327  
     14.4 Redirection in Mixed Reality Environments 328  
     14.5 Challenges and Future Directions 330  
     References 331  
  15 VR-Based Assessment and Rehabilitation of Functional Mobility 334  
     15.1 VR-Based Assessment and Rehabilitation to Promote Functional Mobility 337  
        15.1.1 VR-Based Assessment and Rehabilitation Following Motor Dysfunction 337  
        15.1.2 VR-Based Assessment and Rehabilitation Following Visual Dysfunction 340  
     15.2 Dynamical Disease and VR-Based Assessment 342  
        15.2.1 Dynamic Measures for Assessing Local Functional Mobility Using VR 343  
        15.2.2 Dynamic Measures for Assessing Global Functional Mobility Using VR 345  
     15.3 Conclusion 347  
     References 348  
  16 Full Body Locomotion with Video Game Motion Controllers 352  
     16.1 Introduction 352  
     16.2 Video Game Motion Controllers 353  
        16.2.1 Wiimote 354  
        16.2.2 Playstation Move 358  
        16.2.3 Microsoft Kinect 360  
     16.3 Dealing with the Data 363  
        16.3.1 Understanding the Data Coming from the Device 364  
        16.3.2 Research the Algorithm Options Suited for the Data 365  
        16.3.3 Modifying the Models to Address Error and Uncertainty 369  
        16.3.4 Applying All the Data Toward a Solution 370  
     16.4 Creating an Interface 371  
        16.4.1 Challenges 371  
        16.4.2 Controlling Travel 372  
        16.4.3 Understand Your Design Tradeoffs and Users 373  
        16.4.4 Find How People Want to Interact 374  
        16.4.5 Compensate For Technology Limitations 374  
     16.5 Conclusion 376  
     References 376  
  17 Interacting with Augmented Floor Surfaces 378  
     17.1 Introduction 378  
     17.2 Background 379  
        17.2.1 Input from the Foot in Human-Computer Interaction 381  
        17.2.2 Relevance to Virtual Reality 382  
     17.3 Techniques and Technologies 383  
        17.3.1 Indirect Optical Sensing 383  
        17.3.2 Contact Sensing 384  
        17.3.3 Usability 385  
     17.4 Case Study: A Distributed, Multimodal Floor Interface 388  
        17.4.1 Contact Localization 388  
        17.4.2 Virtual Walking on Natural Materials 391  
        17.4.3 Floor Touch-Surface Interaction Techniques 391  
        17.4.4 Usability of Foot-Floor Touch-Surface Interfaces 392  
        17.4.5 Application: Geospatial Data Navigation 394  
        17.4.6 Foot-Based Gestures for Geospatial Navigation 394  
     17.5 Conclusions 398  
     References 398  
  Index 401  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz