Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Chassis Handbook - Fundamentals, Driving Dynamics, Components, Mechatronics, Perspectives
  Großes Bild
 
Chassis Handbook - Fundamentals, Driving Dynamics, Components, Mechatronics, Perspectives
von: Bernd Heißing, Metin Ersoy
Vieweg+Teubner (GWV), 2010
ISBN: 9783834897893
611 Seiten, Download: 36055 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: A (einfacher Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 5  
  Contributors 6  
  Contents 8  
  1 Introduction and Fundamentals 23  
     1.1 History, Definition, Function, and Significance 24  
        1.1.1 History 24  
        1.1.2 Definition and Scope 29  
        1.1.3 Purpose and Significance 30  
     1.2 Chassis Design 31  
        1.2.1 Vehicle Classification 31  
        1.2.2 Powertrain Configurations 32  
        1.2.3 Chassis Composition 35  
        1.2.4 Trends in Chassis Composition 35  
     1.3 Chassis Layout 37  
        1.3.1 Chassis Requirements 38  
        1.3.2 Layout of Suspension Kinematics 40  
        1.3.3 Suspension Kinematics 40  
           1.3.3.1 Suspension Parameters Relative to Vehicle 40  
           1.3.3.2 Roll and Pitch Center 42  
           1.3.3.3 Wheel Travel 42  
           1.3.3.4 Wheel Travel Parameters 43  
           1.3.3.5 Steering Kinematic Parameters 46  
           1.3.3.6 Kinematic Parameters of Current Vehicles 50  
           1.3.3.7 Wheel Travel Curves 50  
           1.3.3.8 Wheel Kinematic Calculation Software 53  
        1.3.4 Elastokinematics and Component Compliances in Suspension Design 53  
        1.3.5 Target Parameter Values 54  
        1.3.6 Suspension Composition 55  
  2 Driving Dynamics 57  
     2.1 Driving Resistances and Energy Requirements 57  
        2.1.1 Driving Resistances 57  
           2.1.1.1 Rolling Resistance 57  
           2.1.1.2 Effect of Road Surface on Rolling Resistance FR,Tr 62  
           2.1.1.3 Aerodynamic Drag FA 65  
           2.1.1.4 Climbing Resistance FC 66  
           2.1.1.5 Inertial Resistance FI 67  
           2.1.1.6 Total Driving Resistance 68  
        2.1.2 Crosswind Response Behavior 68  
        2.1.3 Performance and Energy Requirements 71  
        2.1.4 Fuel Consumption 72  
     2.2 Tire Traction and Force Transfer to the Roadway 74  
        2.2.1 The Physics of Tire Traction and Force Transfer 76  
           2.2.1.1 Acceleration and Braking 79  
           2.2.1.2 Cornering 80  
        2.2.2 Detailed Tire Forces 85  
     2.3 Longitudinal Dynamics 87  
        2.3.1 Acceleration and Braking 87  
           2.3.1.1 Anti-Dive 87  
           2.3.1.2 Anti-Lift (Anti-Squat) 88  
           2.3.1.3 Load Changes During Straightline Driving 89  
     2.4 Vertical Dynamics 89  
        2.4.1 Springs 89  
           2.4.1.1 Spring Ratio 90  
           2.4.1.2 Natural (Eigen) Frequencies 90  
        2.4.2 Vibration Dampers 91  
        2.4.3 Excitations from the Roadway 92  
           2.4.3.1 Harmonic Excitations 92  
           2.4.3.2 Periodic Irregularities 93  
           2.4.3.3 Stochastic (Random) Irregularities 93  
           2.4.3.4 Spectral Density of Road Surface Irregularities 94  
           2.4.3.5 Measured Road Surface Irregularities 95  
        2.4.4 Tires as Spring/Damper Elements 95  
        2.4.5 Suspension Models 96  
           2.4.5.1 Single-Mass System 96  
           2.4.5.2 Dual-Mass System 97  
           2.4.5.3 Expansion of the Model to Include Seat Suspension Effects 97  
           2.4.5.4 Single-Track Suspension Model 98  
           2.4.5.5 Two-Track Suspension Model 99  
        2.4.6 Parameter Variation 101  
        2.4.7 The Roadway/Vehicle Connection 103  
           2.4.7.1 Spectral Density of Vehicle Body Accelerations 104  
           2.4.7.2 Spectral Density of Dynamic Wheel Loads 106  
        2.4.8 Human Oscillation Evaluation 106  
        2.4.9 Conclusions from the Fundamentalsof Vertical Dynamics 108  
     2.5 Lateral Dynamics 108  
        2.5.1 Handling Requirements 108  
        2.5.2 Steering Kinematics 109  
           2.5.2.1 Static Steering Layout 109  
           2.5.2.2 Dynamic Steering Layout 110  
        2.5.3 Vehicle Modeling 111  
           2.5.3.1 Simple Single-Track (Bicycle) Model 111  
           2.5.3.2 Simple Vehicle Dynamics 112  
           2.5.3.3 Understeer and Oversteer 115  
           2.5.3.4 Expanded Single-Track Model with Rear-Wheel Steering 116  
           2.5.3.5 Nonlinear Single-Track Model 117  
           2.5.3.6 Analysis of Transient Behavior Using the Simple Single-Track Model 119  
           2.5.3.7 The Vehicle as Part of a Closed-Loop System 121  
           2.5.3.8 Dynamic Behavior of the Vehicle as Part of a Closed-Loop System 122  
           2.5.3.9 Slip Angle Compensation Using Rear-Wheel Steering 125  
           2.5.3.10 Investigation of Frequency Response for Varied Vehicle Configurations 127  
           2.5.3.11 Dual-Track Model 128  
           2.5.3.12 Parameter Variation 131  
     2.6 General Vehicle Dynamics 135  
        2.6.1 Interactions between Vertical, Longitudinal, and Lateral Dynamics 135  
     2.7 Chassis Control Systems 140  
        2.7.1 Definition of Terms 140  
        2.7.2 Limitations of the Passive Vehicle – Basic Goal Conflicts 140  
        2.7.3 The Driver-Vehicle Control Loop 141  
        2.7.4 Division of Chassis Control Systems into Domains 142  
           2.7.4.1 Longitudinal Dynamics 142  
           2.7.4.2 Lateral Dynamics 143  
           2.7.4.3 Vertical Dynamics 143  
        2.7.5 Requirements for Chassis Control Systems 143  
     2.8 Handling Characteristics 144  
        2.8.1 Handling Evaluation 144  
        2.8.2 Driving Maneuvers 146  
        2.8.3 Parameter Range of Maneuvers 146  
        2.8.4 Tuning Procedures 149  
           2.8.4.1 Tuning Procedures forSteady-State Steering Behavior 149  
        2.8.5 Subjective Handling Evaluation 149  
           2.8.5.1 Evaluation Methods and Representation 152  
           2.8.5.2 Acceleration (Driveoff) Behavior 152  
           2.8.5.3 Braking Behavior 152  
           2.8.5.4 Steering Behavior 154  
           2.8.5.5 Cornering Behavior 156  
           2.8.5.6 Straightline Driving Behavior 156  
           2.8.5.7 Ride Comfort 158  
        2.8.6 Objective Handling Evaluations 159  
           2.8.6.1 Measurement Parameters 159  
           2.8.6.2 Acceleration (Driveoff) Behavior 159  
           2.8.6.3 Braking Behavior 160  
           2.8.6.4 Steering Behavior 161  
           2.8.6.5 Cornering Behavior 163  
           2.8.6.6 Straightline Driving Behavior 165  
           2.8.6.7 Ride Comfort 167  
     2.9 Active and Passive Safety 167  
  3 Chassis Components 170  
     3.1 Chassis Structuring 170  
        3.1.1 Classification by Function 170  
        3.1.2 Modular Chassis Structure 171  
        3.1.3 Chassis Components 171  
     3.2 Drivetrain 172  
        3.2.1 Configurations 172  
        3.2.2 Axle Drives 172  
           3.2.2.1 Differentials 172  
           3.2.2.2 Locking Differentials 172  
           3.2.2.3 Active Differentials 174  
           3.2.2.4 Torque Vectoring 174  
        3.2.3 Four-wheel-drive (All-wheel-drive) 175  
        3.2.4 Control Strategies 176  
        3.2.5 Half-shafts 177  
     3.3 Wheel Brakes and Braking 178  
        3.3.1 Fundamentals and Requirements 178  
        3.3.2 Types of Braking Systems 179  
           3.3.2.1 General Requirements 180  
        3.3.3 Legal Regulations 181  
        3.3.4 Brake System Design 181  
           3.3.4.1 Brake Force Distribution 181  
           3.3.4.2 Dimensioning 183  
        3.3.5 Braking Torque and Dynamics 183  
           3.3.5.1 Braking Torque 183  
           3.3.5.2 Braking Dynamics 184  
        3.3.6 Brake System Components 185  
           3.3.6.1 Brake Calipers 185  
           3.3.6.2 Brake Discs 189  
           3.3.6.3 Brake Linings 190  
           3.3.6.4 Drum Brakes 190  
           3.3.6.5 Brake Fluid 193  
           3.3.6.6 Brake Force Booster 193  
           3.3.6.7 Tandem Master Cylinder 194  
           3.3.6.8 Human-Machine Interface (HMI) 194  
        3.3.7 Electronic Braking Control Systems 198  
           3.3.7.1 Brake Assistant (MBA, EBA, HBA) 198  
           3.3.7.2 Wheel Speed Sensors 201  
           3.3.7.3 Electronic Braking System Functions 202  
           3.3.7.4 Electrohydraulic Brake (EHB) 208  
           3.3.7.5 Electromechanical Brake (EMB) 209  
           3.3.7.6 Networked Chassis 211  
     3.4 Steering Systems 212  
        3.4.1 Requirements and Designs 212  
        3.4.2 Hydraulic Rack and Pinion Steering 215  
           3.4.2.1 Technology and Function 215  
           3.4.2.2 Design and Components 218  
        3.4.3 Steering Tie Rods 221  
        3.4.4 Steering Driveline and Steering Column 224  
           3.4.4.1 Components and Function Modules 224  
           3.4.4.2 Design and Testing 226  
           3.4.4.3 Crash Requirements and Energy Absorption Mechanisms 227  
           3.4.4.4 Future Prospects and Modularization 230  
        3.4.5 Electromechanical Steering Systems 230  
           3.4.5.1 Design Concepts 230  
           3.4.5.2 Configuration and Advantages 233  
        3.4.6 Active Steering and Superposition Steering 236  
           3.4.6.1 Functional Principles and Configuration 236  
           3.4.6.2 Functions – Present and Future 238  
        3.4.7 Rack and Pinion Power Steering with Torque and Angle Actuators 240  
        3.4.8 Rear-wheel and Four-wheel Steering Systems 241  
        3.4.9 Steer-by-wire and Single-wheel Steering Systems 243  
           3.4.9.1 System Configuration and Components 244  
           3.4.9.2 Technology, Advantages, Opportunities 246  
     3.5 Springs and Stabilizers 247  
        3.5.1 The Purpose of the Spring System 247  
        3.5.2 Design and Calculation of Steel Springs 247  
           3.5.2.1 Leaf Springs 248  
           3.5.2.2 Torsion Bar Springs 251  
           3.5.2.3 Stabilizers 252  
           3.5.2.4 Coil Springs 260  
        3.5.3 Spring Materials 268  
        3.5.4 Steel Spring Manufacture 270  
           3.5.4.1 Hot Forming 270  
           3.5.4.2 Heat Treating Hot Formed Springs 272  
           3.5.4.3 Cold Forming 272  
           3.5.4.4 Shot Peening 273  
           3.5.4.5 Plastification 274  
           3.5.4.6 Corrosion Protection 274  
           3.5.4.7 Final Inspection and Marking 275  
        3.5.5 Roll Control Using Stabilizers 275  
           3.5.5.1 Passive Stabilizers 275  
           3.5.5.2 Switchable Off-Road Stabilizers 276  
           3.5.5.3 Switchable On-Road Stabilizers 276  
           3.5.5.4 Semi-Active Stabilizers 276  
           3.5.5.5 Active Stabilizers 278  
        3.5.6 Springs for use with AutomaticLeveling Systems 278  
           3.5.6.1 Purpose and Configurations 278  
           3.5.6.2 Leveling Using a Gas Spring 279  
        3.5.7 Hydropneumatic Springs 282  
           3.5.7.1 Self-Pumping Hydropneumatic Spring/Damper Elements 282  
        3.5.8 Air Springs 285  
     3.6 Damping 287  
        3.6.1 The Purpose of Damping 287  
        3.6.2 Telescopic Shock Absorber Designs 291  
           3.6.2.1 Twin-Tube Shock Absorbers 291  
           3.6.2.2 Monotube Shock Absorbers 292  
           3.6.2.3 Comparison of Damper Types 292  
           3.6.2.4 Special Designs 293  
        3.6.3 Coilover Shock Absorber and Strut 293  
        3.6.4 Shock Absorber Calculations 295  
        3.6.5 Additional Damper Features 296  
           3.6.5.1 Rebound and Compression Bump Stops 296  
           3.6.5.2 Stroke-Dependent Damping 298  
           3.6.5.3 Amplitude-Selective Damping 300  
        3.6.6 Damper End Mounts 301  
        3.6.7 Semi-Active Damping and Spring Functions 302  
        3.6.8 Alternative Damping Concepts 306  
           3.6.8.1 Magneto-Rheological (MRF) Dampers 306  
           3.6.8.2 Conjoined Damping 307  
           3.6.8.3 Load-Dependent Damping (PDC) 307  
     3.7 Wheel Control 308  
        3.7.1 Purpose, Requirements, and System Structure 308  
        3.7.2 Suspension Links: Purpose, Requirements, and System Structure 309  
           3.7.2.1 Control Arms (Control Links) 310  
           3.7.2.2 Support Links 311  
           3.7.2.3 Auxiliary Links 311  
           3.7.2.4 Suspension Link Requirements 312  
           3.7.2.5 Suspension Link Materials 312  
           3.7.2.6 Suspension Link Manufacturing Processes 313  
           3.7.2.7 Manufacturing Methods for Aluminum Suspension Links 319  
           3.7.2.8 Configuration and Optimization of Suspension Links 321  
           3.7.2.9 Integration of the Joints into the Link 321  
        3.7.3 Ball Joints 322  
           3.7.3.1 Purpose and Requirements 323  
           3.7.3.2 Types of Ball Joints 323  
           3.7.3.3 Ball Joint Components 324  
           3.7.3.4 Bearing System (Ball Race, Grease) 327  
           3.7.3.5 Sealing System (Sealing Boot, Retaining Ring) 330  
           3.7.3.6 Suspension Ball Joints 333  
           3.7.3.7 Preloaded Ball Joints 334  
           3.7.3.8 Cross Axis Ball Joints 335  
        3.7.4 Rubber Bushings 337  
           3.7.4.1 Purpose, Requirements, and Function 337  
           3.7.4.2 Types of Rubber Bushings 339  
        3.7.5 Pivot Joints 341  
        3.7.6 Rotational Sliding Joints (Trunnion Joints) 342  
        3.7.7 Chassis Subframes 343  
           3.7.7.1 Purpose and Requirements 343  
           3.7.7.2 Types and Designs 343  
     3.8 Wheel Carriers and Bearings 346  
        3.8.1 Types of Wheel Carriers 346  
        3.8.2 Wheel Carrier Materials and Manufacturing Methods 348  
        3.8.3 Types of Wheel Bearings 349  
           3.8.3.1 Bearing Seals 352  
           3.8.3.2 Lubrication 352  
           3.8.3.3 ABS Sensors 353  
        3.8.4 Wheel Bearing Manufacturing 355  
           3.8.4.1 Rings and Flanges 355  
           3.8.4.2 Cages and Rolling Elements 356  
           3.8.4.3 Assembly 356  
        3.8.5 Requirements, Design, and Testing 356  
           3.8.5.1 Bearing Rotational Fatigue Strength 358  
           3.8.5.2 Component Strength and Tilt Stiffness 360  
           3.8.5.3 Verification by Testing 362  
        3.8.6 Future Prospects 363  
     3.9 Tires and Wheels 367  
        3.9.1 Tire Requirements 367  
           3.9.1.1 Properties and Performance 367  
           3.9.1.2 Legal Requirements 369  
        3.9.2 Types, Construction, and Materials 370  
           3.9.2.1 Tire Types 370  
           3.9.2.2 Tire Construction 371  
           3.9.2.3 Tire Materials 371  
           3.9.2.4 The Viscoelastic Properties of Rubber 372  
        3.9.3 Transmission of Forces between the Tire and the Road Surface 373  
           3.9.3.1 Supporting Force 373  
           3.9.3.2 Adhesion Behavior and Lateral Force Buildup 374  
           3.9.3.3 Tangential Forces: Driving and Braking 375  
           3.9.3.4 Sideslip, Lateral Forces, and Aligning Moments 375  
           3.9.3.5 Sideslip Stiffness 376  
           3.9.3.6 Tire Behavior under Slip 378  
           3.9.3.7 Tire Uniformity 379  
        3.9.4 Tire Simulation Models 379  
           3.9.4.1 Tire Models for Lateral Dynamics 379  
           3.9.4.2 Tire Models Using Finite Elements (FEM) 381  
           3.9.4.3 Tire Models for Vertical Dynamics 381  
           3.9.4.4 Tire Vibration Modes 382  
           3.9.4.5 Cavity Natural Frequencies 382  
           3.9.4.6 Full Tire Models 383  
        3.9.5 Modern Tire Technologies 385  
           3.9.5.1 Tire Sensors 385  
           3.9.5.2 Run-Flat Tires 387  
           3.9.5.3 Tires and Control Systems 388  
           3.9.5.4 High Performance (HP) and Ultra High Performance (UHP) Tires 389  
        3.9.6 Vehicle Testing and Measurement 390  
           3.9.6.1 Subjective Test Procedures 390  
           3.9.6.2 Objective Test Procedures for Longitudinal Adhesion 391  
           3.9.6.3 Objective Test Procedures for Lateral Adhesion 392  
           3.9.6.4 Acoustics 393  
        3.9.7 Laboratory Testing and Measurement Methods 393  
           3.9.7.1 Basic Tire Test Rig Designs 393  
           3.9.7.2 Strength Tests 394  
           3.9.7.3 Measuring Tire Characteristics Using a Test Rig 394  
           3.9.7.4 Measuring Tire Characteristics Using a Vehicle-Mounted Test Rig 394  
           3.9.7.5 Measuring Tire Rolling Resistance 395  
           3.9.7.6 Measuring Uniformity and Geometry 395  
           3.9.7.7 Roadway Measurement and Modeling 397  
           3.9.7.8 Power Loss Analysis 397  
           3.9.7.9 Tire Temperature Measurement 398  
        3.9.8 The Future of Tire Technology 399  
           3.9.8.1 Material Developments 399  
           3.9.8.2 Energy Saving Tires 399  
  4 Axles and Suspensions 403  
     4.1 Rigid Axles 405  
        4.1.1 The De Dion Driven Rigid Axle 407  
        4.1.2 Rigid Axles with Longitudinal Leaf Springs 407  
        4.1.3 Rigid Axles with Longitudinal and Lateral Links 408  
        4.1.4 Rigid Parabolic Axles with a Central Joint and Lateral Control Links 409  
     4.2 Semi-Rigid Axles 409  
        4.2.1 Twist Beam Axles 410  
           4.2.1.1 Torsion-Type Twist Beam Axles 411  
           4.2.1.2 Standard Twist Beam Axles 411  
           4.2.1.3 Coupling-Type Twist Beam Axles 412  
        4.2.2 The Dynamic Twist Beam Axle 412  
     4.3 Independent Suspension 413  
        4.3.1 Independent Suspension Kinematics 413  
        4.3.2 The Advantages of Independent Suspension 415  
        4.3.3 Single-Link Independent Suspension Systems 415  
           4.3.3.1 Trailing Link Independent Suspension 416  
           4.3.3.2 Semi-Trailing Link Independent Suspension 417  
           4.3.3.3 Screw-Link Independent Suspension 418  
        4.3.4 Two-Link Independent Suspension 418  
           4.3.4.1 Lateral-Longitudinal Swing Axles 418  
           4.3.4.2 Trapezoidal Link with One Lateral Link (Audi 100 Quattro) 419  
           4.3.4.3 Trapezoidal Link with One Flexible Lateral Link (Porsche Weissach Axle) 419  
        4.3.5 Three-Link Independent Suspension 419  
           4.3.5.1 Central Link Independent Suspension 419  
           4.3.5.2 Double Wishbone Independent Suspension 420  
        4.3.6 Four-Link Independent Suspension 422  
           4.3.6.1 Rear Axle Multi-Link Independent Suspension 422  
           4.3.6.2 Multi-Link Suspension with Two Lower Two-Point Links 423  
           4.3.6.3 Trapezoidal (Integral) Link Suspension 423  
           4.3.6.4 Two Longitudinal and Two Lateral Links 424  
           4.3.6.5 One Longitudinal and Three Lateral Links 424  
           4.3.6.6 One Diagonal and Three Lateral Links 425  
        4.3.7 Five-Link Independent Suspension 426  
           4.3.7.1 Five-Link Front Suspension (SLA with two Decomposed 3-Point Links) 426  
           4.3.7.2 Five-Link Rear Suspension 426  
        4.3.8 Strut-Type Suspension Systems 427  
     4.4 Front Axle Suspension 430  
        4.4.1 Front Axle Suspension System Requirements 430  
        4.4.2 Front Axle Components 432  
        4.4.3 Front Axle Suspension Types 432  
           4.4.3.1 McPherson with Upper Strut Brace 432  
           4.4.3.2 McPherson withOptimized Lower Control Arm 432  
           4.4.3.3 McPherson withDecomposed Lower Control Arm 432  
           4.4.3.4 McPherson with Two-Piece Wheel Carrier 433  
           4.4.3.5 Double Wishbone with Decomposed Control Arms 433  
     4.5 Rear Axle Suspension 434  
        4.5.1 Rear Axle Suspension Requirements 434  
        4.5.2 Rear Axle Components 434  
        4.5.3 Rear Axle Suspension Types 434  
           4.5.3.1 Non-Driven Rear Axles 434  
           4.5.3.2 Driven Rear Axles 434  
        4.5.4 ULSAS Rear Axle Benchmark 435  
     4.6 Design Catalog for Axle Type Selection 436  
     4.7 The Chassis as a Complete System 436  
        4.7.1 Front / Rear Axle Interaction 436  
     4.8 Future Suspension Systems 438  
        4.8.1 Axles of the Past 20 Years 438  
        4.8.2 Relative Popularity of Various Current Axle Designs 438  
        4.8.3 Future Axle Designs (Trends) 438  
  5 Ride Comfort and NVH 441  
     5.1 Fundamentals: NVH and the Human Body 441  
        5.1.1 Concepts and Definitions 441  
        5.1.2 Sources of Vibrations, Oscillations, and Noise 442  
        5.1.3 Limits of Human Perception 443  
        5.1.4 Human Comfort and Well-Being 444  
        5.1.5 Mitigation of Oscillation and Noise 445  
     5.2 Bonded Rubber Components 446  
        5.2.1 Bonded Rubber Component Functions 446  
           5.2.1.1 Transferring Forces 446  
           5.2.1.2 Enabling Defined Movements 446  
           5.2.1.3 Noise Isolation 447  
           5.2.1.4 Vibration Damping 448  
        5.2.2 The Specific Definition of Elastomeric Components 449  
           5.2.2.1 Force-Displacement Curves 449  
           5.2.2.2 Damping 449  
           5.2.2.3 Setting 450  
     5.3 Engine and Transmission Mounts 451  
     5.4 Chassis and Suspension Mounts and Bushings 455  
        5.4.1 Rubber Bushings 455  
        5.4.2 Sliding Bushings 456  
        5.4.3 Hydraulically-Damped Bushings (Hydro Bushings) 457  
        5.4.4 Chassis Subframe Mounts 460  
        5.4.5 Upper Strut Bearings and Damper Mounts 461  
        5.4.6 Twist Beam Axle Mounts 463  
     5.5 Future Component Designs 464  
        5.5.1 Sensors 465  
        5.5.2 Switchable Chassis Mounts 465  
     5.6 Computation Methods 466  
     5.7 Acoustic Evaluation ofBonded Rubber Components 467  
  6 Chassis Development 469  
     6.1 The Development Process 469  
     6.2 Project Management (PM) 475  
     6.3 The Planning and Definition Phase 475  
        6.3.1 Target Cascading 476  
     6.4 The Concept Phase 477  
     6.5 Computer-Aided Engineering 477  
        6.5.1 Multi-Body Simulation (MBS) 478  
           6.5.1.1 MBS Chassis and Suspension Models in ADAMS/Car 478  
           6.5.1.2 CAD Chassis Models and Multi-Body Systems 478  
           6.5.1.3 Multi-Body Simulation with Rigid and Flexible MBS 479  
           6.5.1.4 Multi-Body Simulations Using Whole-Vehicle, Chassis, and Axle Models 480  
           6.5.1.5 Effects of Manufacturing Tolerances on Kinematic Parameters 481  
        6.5.2 Finite Element Method (FEM) 482  
           6.5.2.1 Classification of Analyses 482  
           6.5.2.2 Strength Analyses 483  
           6.5.2.3 Stiffness Analyses 483  
           6.5.2.4 Natural Frequency Analyses 483  
           6.5.2.5 Service Life and Durability Analyses 484  
           6.5.2.6 Crash Simulations 484  
           6.5.2.7 Topology and Shape Optimization 484  
           6.5.2.8 Simulations of Manufacturing Processes 486  
        6.5.3 Whole-Vehicle Simulations 486  
           6.5.3.1 Vehicle Handling and Dynamic Simulations 486  
           6.5.3.2 Kinematics and Elastokinematics 486  
           6.5.3.3 Standard Load Cases 487  
           6.5.3.4 MBS Model Verification 488  
           6.5.3.5 NVH 488  
           6.5.3.6 Loads Management (Load Cascading from Systems to Components) 490  
           6.5.3.7 Whole-Vehicle Durability Simulations 494  
           6.5.3.8 Whole-Vehicle Handling Fingerprint 494  
           6.5.3.9 Specification of Elastokinematics Using Control-System Methods 495  
        6.5.4 3D Modeling Software (CAD) 496  
        6.5.5 Integrated Simulation Environment 497  
           6.5.5.1 Kinematic Analysis Using ABE Software 497  
           6.5.5.2 The Virtual Product Development Environment (VPE) 500  
     6.6 Series Development and Validation 502  
        6.6.1 Design 502  
           6.6.1.1 Component Design 503  
           6.6.1.2 Package Volume 504  
           6.6.1.3 Failure Mode and Effects Analysis (FMEA) 505  
           6.6.1.4 Tolerance Investigations 505  
        6.6.2 Validation 505  
           6.6.2.1 Prototypes 505  
           6.6.2.2 Validation Using Test Rigs 505  
           6.6.2.3 Roadway Simulation Test Rig 508  
        6.6.3 Whole-Vehicle Validation 509  
        6.6.4 Optimization and Fine-Tuning 510  
     6.7 Development ActivitiesDuring Series Production 510  
     6.8 Summary and Future Prospects 511  
  7 Chassis Control Systems 513  
     7.1 Chassis Electronics 513  
     7.2 Electronic Chassis ControlSystems 513  
        7.2.1 Domains 513  
        7.2.2 Longitudinal Dynamic Control Systems – Wheel Slip Regulation 514  
           7.2.2.1 Braking Control 514  
           7.2.2.2 Electronically-Controlled Center Differentials 514  
           7.2.2.3 Torque-On-Demand Transfer Cases 514  
           7.2.2.4 Electronically-ControlledAxle Differentials 515  
           7.2.2.5 Axle Drive for Lateral Torque Distribution 516  
        7.2.3 Lateral Dynamic Control Systems 517  
           7.2.3.1 Electric Power Steering Systems (EPS) 517  
           7.2.3.2 Superimposed Steering 518  
           7.2.3.3 Active Rear-Wheel Steering 518  
           7.2.3.4 Active Rear-Axle Kinematics 519  
        7.2.4 Vertical Dynamic Control Systems 519  
           7.2.4.1 Variable Dampers 519  
           7.2.4.2 Active Stabilizers 521  
           7.2.4.3 Active Leveling Systems 521  
        7.2.5 Safety Requirements 522  
        7.2.6 Bus Systems 523  
           7.2.6.1 CAN 523  
           7.2.6.2 FlexRay 523  
     7.3 System Networking 523  
        7.3.1 Vehicle Dynamic Control (VDC) 523  
        7.3.2 Torque Vectoring 525  
        7.3.3 Vertical Dynamic Management 526  
     7.4 Functional Integration 526  
        7.4.1 System Architecture 526  
        7.4.2 Standard Interfaces 527  
        7.4.3 Smart Actuators 528  
     7.5 Chassis Control System 528  
        7.5.1 Simulation Models 529  
        7.5.2 Hardware-in-the-Loop Simulation 530  
     7.6 Mechatronic Chassis Systems 531  
        7.6.1 Longitudinal Dynamics 531  
           7.6.1.1 Powertrain Systems 532  
           7.6.1.2 Braking Systems 534  
        7.6.2 Lateral Dynamics 536  
           7.6.2.1 Front-Wheel Steering Systems 536  
           7.6.2.2 Rear-Wheel Steering Systems 537  
           7.6.2.3 Roll Stabilization Systems 540  
           7.6.2.4 Active Kinematics 543  
        7.6.3 Vertical Dynamics 546  
           7.6.3.1 System Requirements 546  
           7.6.3.2 Classification of Vertical Dynamic Systems 546  
           7.6.3.3 Damping Systems 547  
           7.6.3.4 Active Leveling Systems 551  
           7.6.3.5 Current Active Spring Systems 552  
           7.6.3.6 Fully Active Integrated Suspension Systems 555  
           7.6.3.7 Pivots (Bushings, Joints, Mounts) 557  
     7.7 X-by-wire 559  
        7.7.1 Steer-by-wire 559  
        7.7.2 Brake-by-wire 560  
           7.7.2.1 Electrohydraulic Braking (EHB) 561  
           7.7.2.2 Electromechanical Braking(EMB) Systems 561  
           7.7.2.3 The ContiTeves Electromechanical Brake 562  
           7.7.2.4 Radial (Full-Contact) Disc Brakes 562  
           7.7.2.5 Wedge Brake 564  
        7.7.3 Leveling-by-wire 565  
     7.8 Driver Assistance Systems 565  
        7.8.1 Braking Assistance Systems 565  
           7.8.1.1 Safety-Relevant Braking Assistance 566  
           7.8.1.2 Comfort-Oriented Braking Assistance 567  
           7.8.1.3 Braking Assistance System Requirements 567  
        7.8.2 Distance Assistance Systems 568  
        7.8.3 Steering Assistance Systems 569  
           7.8.3.1 Steering Assistance Using Adaptive Assistance Torques 569  
           7.8.3.2 Steering Assistance Using Additional Steering Torque 569  
           7.8.3.3 Steering Assistance Using a Supplemental Steer Angle 570  
           7.8.3.4 Summary 571  
        7.8.4 Parking Assistance Systems 571  
           7.8.4.1 Introduction 571  
           7.8.4.2 Parking Space Recognition 571  
           7.8.4.3 Parallel Parking 573  
           7.8.4.4 Steering Actuators 574  
  8 The Future of Chassis Technology 577  
     8.1 Chassis System Concepts – Focus on Customer Value 577  
        8.1.1 Choosing Handling Behavior 577  
        8.1.2 Diversification of Vehicle Concepts – Stabilization of Chassis Concepts 579  
           8.1.2.1 Front Suspension as of 2004 579  
           8.1.2.2 Rear Suspension as of 2004 580  
        8.1.3 The Future of Chassis Subsystems and Components 580  
           8.1.3.1 The Future of Axle Drive Units 580  
           8.1.3.2 The Future of Braking Systems 581  
           8.1.3.3 The Future of Steering Systems 581  
           8.1.3.4 The Future of Suspension Spring Systems 581  
           8.1.3.5 The Future of Dampers 581  
           8.1.3.6 The Future of Wheel Control Components 581  
           8.1.3.7 The Future of Wheel Bearings 581  
           8.1.3.8 The Future of Tires and Wheels 581  
     8.2 Electronic Chassis Systems 581  
        8.2.1 Electronic Assistance Systems and Networking 581  
        8.2.2 Networking Chassis Control Systems 582  
           8.2.2.1 Peaceful Coexistence 582  
           8.2.2.2 Integral Control 583  
           8.2.2.3 Networked Control 583  
           8.2.2.4 Performance / Efficiency 584  
           8.2.2.5 System Safety 584  
           8.2.2.6 The Development Process 584  
           8.2.2.7 Data Transmission Requirements 585  
           8.2.2.8 Summary 585  
     8.3 The Future of X-by-Wire Systems 585  
     8.4 Intelligent and Predictive Future Chassis Systems 586  
        8.4.1 Sensors 587  
        8.4.2 Actuators 587  
        8.4.3 Predictive Driving 588  
     8.5 Hybrid Vehicles 590  
     8.6 The Rolling/Driving Chassis 591  
     8.7 The Vision of Autonomous Vehicle Control 592  
     8.8 Future Scenarios for Vehicle and Chassis Technology 593  
     8.9 Outlook 596  
  Index 599  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz