Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Thermal Spray Fundamentals - From Powder to Part
  Großes Bild
 
Thermal Spray Fundamentals - From Powder to Part
von: Pierre L. Fauchais, Joachim V.R. Heberlein, Maher I. Boulos
Springer-Verlag, 2014
ISBN: 9780387689913
1587 Seiten, Download: 63741 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Foreword 6  
  Preface 10  
  Contents 12  
  About the Authors 28  
  Chapter 1: Introduction 30  
     1.1 Needs for Coatings 30  
     1.2 Thin Films vs. Thick Films 31  
     1.3 Thermal Spray Coating Concept 31  
     1.4 Description of Different Thermal Spray Coating Processes 33  
     1.5 History of Thermal Spray 36  
     1.6 Thermal Spray Applications 37  
     1.7 Overview of Book Content 42  
     References 43  
  Chapter 2: Overview of Thermal Spray 45  
     2.1 Surface Treatments or Coatings 45  
        2.1.1 Why Surface Treatment or Coatings 45  
        2.1.2 Surface Treatments 46  
           2.1.2.1 Strain Hardening 46  
           2.1.2.2 Surface Hardening 46  
           2.1.2.3 Thermo Chemical Treatments 46  
        2.1.3 Coatings 47  
           2.1.3.1 Electro/Electroless Plating 47  
           2.1.3.2 Chemical Vapor Deposition 47  
           2.1.3.3 Physical Vapor Deposition 48  
           2.1.3.4 Pulsed Laser Deposition 50  
           2.1.3.5 Thermal Spray 50  
     2.2 Brief Descriptions of Thermal Spray Applications 53  
     2.3 Overview of Thermal Spray Processes 55  
        2.3.1 Compressed Gas Expansion 56  
        2.3.2 Combustion Spraying 56  
        2.3.3 Electrical Discharge Plasma Spraying 56  
     2.4 Substrate Preparation 60  
     2.5 Energetic Gas Flow Generation 61  
        2.5.1 Cold Spray 61  
           2.5.1.1 Conventional High-Pressure Cold Spray 61  
           2.5.1.2 Low-Pressure Cold Spray 62  
        2.5.2 Flame Spray 63  
           2.5.2.1 Powder Flame Spraying 63  
           2.5.2.2 Wire, Rod, or Cord Flame Spraying 63  
        2.5.3 High-Velocity Oxy-fuel Spraying 64  
        2.5.4 Detonation Gun Spraying 66  
        2.5.5 Direct Current Blown Arc Spraying or d.c. Plasma Spraying 67  
        2.5.6 Vacuum Induction Plasma Spraying 68  
        2.5.7 Wire Arc Spraying 70  
        2.5.8 Plasma-Transferred Arc Deposition 71  
     2.6 Material Injection 72  
        2.6.1 Powder Injection 72  
        2.6.2 Wire, Rod, or Cord Injection 75  
        2.6.3 Liquid Injection 78  
           2.6.3.1 Gas Atomization 78  
           2.6.3.2 Mechanical Injection 78  
     2.7 Energetic Gas-Particle Interactions 79  
        2.7.1 Momentum Transfer 79  
        2.7.2 Heat Transfer 80  
        2.7.3 Effect of the Surrounding Atmosphere 82  
           2.7.3.1 Particle In-Flight Oxidation 83  
           2.7.3.2 Substrate and Successive Passes 83  
           2.7.3.3 Chemical Reactions Other Than Oxidation 84  
           2.7.3.4 Limiting Gas-Induced Reactions 84  
     2.8 Coating Formation 85  
        2.8.1 Coatings from Fully or Partially Melted Particles in Conventional Spraying 85  
        2.8.2 Adhesion of Conventional Coatings 88  
           2.8.2.1 Hot Particles 88  
           2.8.2.2 Cold Particles 90  
        2.8.3 Coatings Resulting from Solution or Suspension Spraying 91  
        2.8.4 Residual Stresses 92  
     2.9 Control of Coating Formation 93  
        2.9.1 Coating Temperature Control Before, During, and After Spraying 93  
        2.9.2 Control of Other Spray Parameters 95  
           2.9.2.1 Surface Preparation 95  
           2.9.2.2 Standoff Distance 96  
           2.9.2.3 Impact Angle 96  
           2.9.2.4 Beads 96  
           2.9.2.5 Passes 96  
     2.10 Summary and Conclusions 97  
     Nomenclature 97  
     References 98  
  Chapter 3: Fundamentals of Combustion and Thermal Plasma 101  
     3.1 Combustion 101  
        3.1.1 Definitions 101  
        3.1.2 Combustion at Equilibrium 102  
        3.1.3 Combustion Kinetics 104  
           3.1.3.1 One-Step Reactions 104  
           3.1.3.2 Simultaneous Interdependent and Chain Reactions 105  
           3.1.3.3 Criterion for Explosion 106  
        3.1.4 Combustion or Deflagrations, Detonations 107  
           3.1.4.1 Combustion (Deflagration) 107  
           3.1.4.2 Detonation 110  
     3.2 Thermal Plasmas Used for Spraying 112  
        3.2.1 Definition 112  
        3.2.2 Plasma Composition 113  
        3.2.3 Thermodynamic Properties 116  
        3.2.4 Transport Properties 117  
           3.2.4.1 Electrical Conductivity 117  
           3.2.4.2 Molecular Viscosity 118  
           3.2.4.3 Thermal Conductivity 120  
     3.3 Basic Concepts in Modeling 123  
        3.3.1 Introduction 123  
        3.3.2 Conservation Equations 123  
           3.3.2.1 Continuity Equations 124  
           3.3.2.2 Momentum Equations 126  
           3.3.2.3 Energy Equations 127  
           3.3.2.4 Electromagnetic Field Equations 128  
           3.3.2.5 Laminar or Turbulent Flows 130  
        3.3.3 Gas Composition, Thermodynamic, and Transport Properties 132  
           3.3.3.1 Gas Composition 132  
           3.3.3.2 Thermodynamic Properties 134  
           3.3.3.3 Transport Properties 134  
     3.4 Summary and Conclusions 134  
     Nomenclature 135  
     References 138  
  Chapter 4: Gas Flow-Particle Interaction 140  
     4.1 Introduction 140  
     4.2 Single Particle Trajectory 141  
        4.2.1 Single Particle Motion 141  
        4.2.2 Particle Injection and Trajectory 143  
           4.2.2.1 Radial Injection 143  
              (a) Influence of the Injection Conditions 144  
              (b) Influence of the Injector Acceleration and Inclination 146  
              (c) Influence of Other Parameters 147  
              (d) Optimization of the Injection 147  
              (e) Influence of Plasma Jet Fluctuations 148  
              (f) Influence of the Plasma Flow Computational Model 150  
           4.2.2.2 Axial Injection 151  
              (a) Flame Spraying 151  
              (b) HVOF 151  
              (c) D-Gun 151  
              (d) Plasma Spraying 152  
              (e) Cold Spray 154  
        4.2.3 Drag Coefficient: Micrometer Sized Single Sphere 155  
           4.2.3.1 Calculations Without Any Correction 155  
           4.2.3.2 Corrections Due to Various Effects 158  
              (a) Influence of the Temperature Gradients 158  
              (b) Influence of the non-Continuum Effect 160  
           4.2.3.3 Trajectory Corrections Due to Various Effects 161  
              (a) Effect of Temperature Gradient 161  
              (b) Effect of Rarefaction and Vaporization 162  
              (c) Effect of Turbulence 162  
           4.2.3.4 Other Effects 163  
              (a) Particle Shape 163  
              (b) Particle Charging 164  
        4.2.4 Drag Coefficient: Submicron and Nanometer-Sized Particles 165  
           4.2.4.1 Problem of Particle Inertia 165  
           4.2.4.2 Thermophoresis Effect 166  
     4.3 In-Flight Single Particle Heat and Mass Transfer and Chemical Reactions 167  
        4.3.1 Basic Conduction, Convection, and Radiation Heat Transfers 167  
        4.3.2 In-Flight Particle Heating and Melting 169  
           4.3.2.1 Basic Assumptions and Governing Equations 169  
           4.3.2.2 Example of Results 170  
              (a) DC Plasma Jets 170  
              (b) RF Inductively Coupled Plasmas 171  
              (c) HVOF Spraying 173  
                 i. Radial Injection 173  
                 ii. Axial Injection 173  
        4.3.3 Heat Transfer to a Single Sphere 175  
           4.3.3.1 Influence of Temperature Gradients 175  
           4.3.3.2 Influence of non-Continuum Effect 179  
           4.3.3.3 Role of Heat Conduction in Fully Dense Particles 180  
              (a) Particle Immersed in an Infinite Hot Gas at Constant Temperature 180  
              (b) Particles in-Flight 185  
           4.3.3.4 Heat Conduction in Porous Particles 187  
           4.3.3.5 Vaporization 190  
              (a) Heating of the Vapor 193  
              (b) Radiation of the Vapor 195  
           4.3.3.6 Chemical Reactions with the Vapor 196  
           4.3.3.7 Chemical Reactions with the Particle 198  
              (a) Diffusion Controlled Reactions 198  
              (b) Reactions Taking Place Between Condensed Phases 200  
              (c) Reactions Controlled by Convection Within the Liquid Phase 201  
     4.4 Ensemble of Particles and High-Energy Jet 203  
        4.4.1 General Remarks 203  
        4.4.2 Particle Injection 205  
           4.4.2.1 Types of Injector 205  
           4.4.2.2 Gas Flow Within the Injector 206  
           4.4.2.3 Particle Flow at the Injector Exit 207  
              (a) Straight Injector 207  
              (b) Straight Double-Flow Injector 209  
              (c) Curved Injector 211  
           4.4.2.4 Interaction Between the Plasma Flow and the Carrier Gas Jet 212  
           4.4.2.5 Concluding Remarks About Particle Injection 214  
        4.4.3 Particles and Plasma Jet with No Loading Effect 214  
           4.4.3.1 Modeling of Interactions with Particles 214  
           4.4.3.2 Example of Results 215  
              (a) d.c. Plasma Jet 215  
              (b) Cold Spray 217  
        4.4.4 Loading Effect 218  
           4.4.4.1 Modeling 218  
           4.4.4.2 Examples of Results 219  
              (a) Ar R.F. Induction Plasma with Copper Particles 219  
              (b) d.c. Plasma with Alumina Particles 221  
              (c) HVOF 221  
              (d) Cold Spray 222  
     4.5 Liquid or Suspension Injection into a Plasma Flow 222  
        4.5.1 Liquid Injection 223  
           4.5.1.1 Spray Atomization 223  
           4.5.1.2 Mechanical Injection 227  
        4.5.2 Liquid Penetration into the Plasma Flow 229  
        4.5.3 Liquid Fragmentation 230  
           4.5.3.1 Simple Approach 230  
           4.5.3.2 More Elaborated Description 232  
        4.5.4 In-Flight Heat Transfer to Droplets 234  
        4.5.5 Cooling of the Plasma Flow by the Liquid 235  
        4.5.6 Influence of Arc Root Fluctuations 236  
        4.5.7 Case of No Fragmentation 238  
     4.6 Summary and Conclusions 239  
     Nomenclature 239  
     References 242  
  Chapter 5: Combustion Spraying Systems 254  
     5.1 Historical Perspective and General Remarks 254  
     5.2 Flame Spraying 255  
        5.2.1 Principle 255  
        5.2.2 Powder Flame Spraying 256  
           5.2.2.1 Spray Conditions 256  
           5.2.2.2 Materials Used 260  
              (a) Metals 260  
              (b) Self Fluxing Alloys 260  
              (c) Few Ceramic (Oxide) Materials 260  
              (d) Reactive Spraying 260  
              (e) Polymers 260  
              (f) Glass 262  
        5.2.3 Liquid Flame Spraying 262  
        5.2.4 Wire, Rod, or Cord Spraying 262  
           5.2.4.1 Wire 263  
           5.2.4.2 Rod and Cord 264  
        5.2.5 Flame Modeling 265  
     5.3 High Velocity Flame Spraying (HVOF-HVAF) 266  
        5.3.1 HVOF or HVAF Powder Spraying 266  
           5.3.1.1 HVOF Processes Description 266  
           5.3.1.2 HVOF Gas Flow Description 269  
           5.3.1.3 Results of HVOF Gas Flow Modeling 269  
           5.3.1.4 HVOF Particle Temperatures and Velocities 277  
           5.3.1.5 Particle Oxidation 280  
           5.3.1.6 HVAF and Modified HVOF Processes 283  
           5.3.1.7 Coating Formation 286  
           5.3.1.8 Summary of HVOF and HVAF Torch Evolution 287  
        5.3.2 HVOF Wire Spraying 287  
        5.3.3 Applications: General Remarks 289  
        5.3.4 Coatings Sprayed with Combustible Gases and Oxygen 289  
           5.3.4.1 Metals 289  
           5.3.4.2 Cermets 290  
           5.3.4.3 Ceramics 291  
           5.3.4.4 Polymers 291  
        5.3.5 Coatings Sprayed with Liquid Fuel and Oxygen 292  
        5.3.6 HVOF-HVAF Modeling 293  
           5.3.6.1 1D Calculations 293  
           5.3.6.2 2D Or 3D Calculations 295  
              (i) Combustion Calculation 295  
              (ii) Flow Calculation 295  
     5.4 Detonation Gun (D-Gun) 296  
        5.4.1 Process Description 296  
           5.4.1.1 (a) First Stage Comprising 297  
           5.4.1.2 (b) Second Stage with 298  
           5.4.1.3 (c) Third Stage Including 298  
        5.4.2 In-Flight Particle Properties 302  
        5.4.3 Graded Coatings 305  
        5.4.4 Coating Properties 305  
           5.4.4.1 Plain Fatigue and Fretting Fatigue 305  
           5.4.4.2 Oxidation-Resistant Coatings 306  
           5.4.4.3 Thermal Barrier Coatings (TBCs) 307  
              (a) TBC´s Bond Coat 307  
              (b) TBC´s Ceramic Layer 307  
              (c) Graded Coatings 308  
           5.4.4.4 Wear-Resistant Coatings 309  
              (a) WC-Co 309  
              (b) Alumina 311  
              (c) Alumina-Titania 312  
              (d) Tribological Coatings 312  
              (f) Corrosion and Wear-Resistant Coatings 312  
              (g) Erosion Resistance 313  
              Other Cermets 314  
              Alloys 315  
           5.4.4.5 D-gun Modeling (1D) 315  
     5.5 Summary and Conclusions 317  
     Nomenclature 318  
     References 319  
  Chapter 6: Cold Spray 331  
     6.1 Introduction to the Different Cold Spray Processes 331  
        6.1.1 High-Pressure Cold Spray 331  
           6.1.1.1 Conventional Cold Spray 331  
           6.1.1.2 Kinetic Spray Process 333  
           6.1.1.3 Pulsed Gas Dynamic Spraying Process 334  
        6.1.2 Low Pressure Cold Spray 335  
        6.1.3 Vacuum Cold Spray 337  
     6.2 High-Pressure Cold Spray Process 338  
        6.2.1 Process Gas Dynamics 338  
           6.2.1.1 One-Dimensional Geometry and Isentropic Expansion of the Flow 338  
              (a) Very Simple Models 338  
              (b) More Complex Models 340  
           6.2.1.2 Effect of Boundary Layer and the Shock on the Substrate 341  
           6.2.1.3 2D and 3D Compressible Models 342  
           6.2.1.4 Nozzle Design 351  
        6.2.2 Coating Adhesion and Cohesion 352  
           6.2.2.1 Deposition of the First Layer 352  
              (a) Induction Time 352  
              (b) Particle and Substrate Deformation 352  
              (c) Phenomena at Impact 354  
              (d) Minimum Particle Diameter 355  
              (e) Critical Velocity 356  
              (f) Empirical Expressions for the Critical Velocity 358  
              (g) Material Suitability 360  
              (h) Substrate 361  
           6.2.2.2 Coating Formation 361  
              (a) Basic Phenomena 361  
              (b) Deposition Efficiency 365  
        6.2.3 Deposition Parameters 368  
           6.2.3.1 Spray Conditions 368  
              (a) Spray Gases 368  
              (b) Nozzle Design 368  
           6.2.3.2 Particles 369  
              (a) Spray Angle 369  
              (b) Influence of Particle Diameter, Specific Mass, and Specific Heat 370  
              (c) Particle Temperature 370  
              (d) Laser-Assisted Cold Spray 372  
              (e) Particle Oxidation 373  
              (f) Carrier Gas 373  
              (g) Loading Effect 373  
              (h) External Parameters 374  
              (i) Heat Treatment After Spraying 375  
           6.2.3.3 Substrates 375  
           6.2.3.4 Composite Materials 376  
              (a) Cermets with Tungsten Carbide 377  
              (b) Other Cermets 379  
                 i. Separate Injection 379  
                 ii. Metal-Ceramic Blends 380  
                 iii. Particles Made of Metal and Ceramic 381  
              (c) Composite Metals 381  
     6.3 Coating Materials and Applications 382  
        6.3.1 General Remarks 382  
        6.3.2 Metals 382  
           6.3.2.1 Aluminum 384  
           6.3.2.2 Copper 385  
           6.3.2.3 Nickel 386  
           6.3.2.4 Selective Galvanizing 386  
           6.3.2.5 Superalloys 387  
           6.3.2.6 Titanium 387  
           6.3.2.7 Iron and Steel 388  
           6.3.2.8 Tantalum 388  
           6.3.2.9 Pure Silicon 389  
           6.3.2.10 Pure Silver 389  
           6.3.2.11 Metallic Coatings on Polymers 389  
        6.3.3 Composites 389  
           6.3.3.1 Pure Iron (99.5%) Or Stainless Steel (304L) Reinforced by Diamond 390  
           6.3.3.2 Aluminum and Copper 390  
           6.3.3.3 Fabrication of Cermet Coatings 391  
           6.3.3.4 Fe-Al Intermetallic Compounds 392  
        6.3.4 Ceramics 392  
     6.4 Low Pressure Cold Spray (LPCS) 395  
        6.4.1 Coating Formation 395  
        6.4.2 Examples of Coatings 396  
     6.5 Summary and Conclusions 398  
     Nomenclature 399  
     References 400  
  Chapter 7: D.C. Plasma Spraying 409  
     7.1 Description of Concept 409  
     7.2 Equipment and Operating Parameters 412  
     7.3 Fundamentals of Plasma Torch Design 414  
        7.3.1 Torch Cathode 415  
        7.3.2 Arc Column 417  
        7.3.3 Torch Anode 419  
        7.3.4 Arc Voltage and Power Dissipation 420  
        7.3.5 Arc Stability 420  
        7.3.6 Electrode Erosion 426  
     7.4 Particle Injection 429  
     7.5 Plasma Torch and Spray Process Modeling 434  
     7.6 Plasma Torch and Jet Characterization: Time Averaged 438  
        7.6.1 Effect of Plasma Gas 439  
        7.6.2 Effect of Plasma Gas Injector Design 442  
        7.6.3 Effect of Anode Nozzle Design 444  
        7.6.4 Effect of Surrounding Atmosphere 447  
        7.6.5 Effect of Cathode Shape 447  
        7.6.6 Effect of Standoff Distance 448  
        7.6.7 Summary of Design and Operating Parameters 450  
     7.7 Plasma Jet Characterization: Transient Behavior 450  
        7.7.1 Plasma Jet Instability 450  
        7.7.2 Effect of Arc Voltage Fluctuations on Plasma Jet and Particle Characteristics 453  
     7.8 Different Plasma Torch Concepts 459  
        7.8.1 Shrouds and Other Fluid Dynamic Jet Stabilization 459  
        7.8.2 Fixed Anode Attachment Position 463  
        7.8.3 Central Injection Torches 466  
        7.8.4 Torches for Inside Diameter Coatings 469  
        7.8.5 High-Power Plasma Spray Torch 470  
        7.8.6 Water-Stabilized Plasma Torch 470  
     7.9 Low Pressure and Controlled Atmosphere Plasma Spraying 472  
     7.10 Plasma-Sprayed Materials and Coatings 480  
        7.10.1 Oxide Materials 481  
           7.10.1.1 Alumina 481  
           7.10.1.2 Titania and Alumina-Titania Coatings 483  
           7.10.1.3 Chromium Oxide 484  
           7.10.1.4 Zirconia 484  
           7.10.1.5 Other Oxides 485  
        7.10.2 Non-oxide Ceramics 486  
        7.10.3 Cermets 488  
        7.10.4 Metals or Alloys 489  
           7.10.4.1 Vacuum Plasma-Sprayed Metal Coatings 489  
           7.10.4.2 Air Plasma-Sprayed Metal Coatings 490  
     7.11 Summary and Conclusions 491  
     Nomenclature 492  
     References 493  
  Chapter 8: R.F. Induction Plasma Spraying 504  
     8.1 Introduction 504  
     8.2 The r.f. Induction Plasma Torch 506  
        8.2.1 Basic Concepts 506  
        8.2.2 Energy Coupling Mechanism 508  
           8.2.2.1 Electromagnetic Coupling and Skin Depth 508  
           8.2.2.2 Energy Coupling Efficiency 512  
           8.2.2.3 Minimum Sustaining Power 513  
        8.2.3 Induction Plasma Torch Design 515  
           8.2.3.1 Flow Stabilization Mechanism 515  
           8.2.3.2 Segmented Metal Wall Torches 517  
           8.2.3.3 Ceramic Wall Torches 517  
           8.2.3.4 Hybrid Plasma Torches 519  
        8.2.4 Temperature, Fluid Flow, and Concentration Fields 522  
           8.2.4.1 Temperature Fields 522  
           8.2.4.2 Flow Fields 524  
           8.2.4.3 Concentration Fields 528  
     8.3 Modeling of the Inductively Coupled Plasma Discharge 534  
        8.3.1 Basic Assumption 536  
        8.3.2 Governing Equations 536  
           8.3.2.1 Continuity Equation 536  
           8.3.2.2 Momentum Equations 536  
           8.3.2.3 Energy Equation 537  
           8.3.2.4 Species Conservation Equations 538  
           8.3.2.5 Vector Potential Equations 540  
           8.3.2.6 Equations and Boundary Condition for Extended Field Model 543  
           8.3.2.7 Turbulence Model 545  
        8.3.3 Typical Results of Fluid Dynamic Modeling 546  
     8.4 Plasma-Particle Interaction Model 557  
        8.4.1 Governing Equations 559  
           8.4.1.1 Continuity, Momentum, Energy, and Mass Conservation Equations 559  
           8.4.1.2 Particle Trajectory Equations and Plasma-Particle Interactions 560  
        8.4.2 Typical Result: Effect of Particle Loading 561  
     8.5 Vacuum Induction Plasma Spraying 574  
        8.5.1 Basic Equipment Design 574  
        8.5.2 Parametric Analysis and Operating Conditions 579  
        8.5.3 Reactive Induction Plasma Spraying 587  
        8.5.4 Suspension Induction Plasma Spraying 589  
        8.5.5 Supersonic Induction Plasma Spraying 592  
     8.6 Summary and Conclusions 594  
     Nomenclature 594  
     References 596  
  Chapter 9: Wire Arc Spraying 602  
     9.1 Description of Concept 602  
     9.2 Equipment and Operating Parameters 604  
     9.3 Wire Materials and Specific Applications 607  
        9.3.1 Wires 607  
        9.3.2 Cored Wires 610  
     9.4 Metal Droplet Formation 612  
     9.5 Process Characterization 622  
        9.5.1 Gas Velocity Measurements 624  
        9.5.2 Metal Droplet Velocity Distributions 625  
        9.5.3 Metal Droplet Temperature 632  
        9.5.4 Coating Characteristics 633  
        9.5.5 Fume Formation 637  
     9.6 Process Modeling 638  
     9.7 Single Wire Arc Spraying 643  
     9.8 Special Developments: Low-Pressure Wire Arc and 90 Angle Spraying 647  
     9.9 Summary and Conclusions 648  
     Nomenclature 649  
     References 649  
  Chapter 10: Plasma-Transferred Arc 655  
     10.1 Description of Concept 655  
        10.1.1 Tungsten Inert Gas 657  
        10.1.2 Metal Inert Gas 657  
     10.2 Equipment and Operating Parameters 658  
     10.3 Coating Materials and Applications 663  
        10.3.1 Corrosion and Wear 663  
        10.3.2 Self-Lubricating Coatings 665  
        10.3.3 Rebuilding of Parts 666  
        10.3.4 Free-Standing Shapes 666  
     10.4 Process Characterization 666  
        10.4.1 Temperature Distributions in the Arc and Arc Voltages 667  
        10.4.2 Heat Flux to the Substrate 670  
        10.4.3 PTA Process Modeling 674  
     10.5 Effect of Process Parameter Changes on Coating Properties 676  
     10.6 Process Modifications and Adaptations 679  
        10.6.1 Variation of Ratio of Pilot Arc Current to Transfer Arc Current 680  
        10.6.2 Variation of Powder Feed 680  
        10.6.3 Nitriding of Coating 680  
        10.6.4 Modulation of Deposition Parameters 681  
        10.6.5 High-Energy PTA 682  
        10.6.6 PTA Combined with Tape Casting 684  
        10.6.7 PTA Deposition with a Negative Work Piece Polarity 684  
        10.6.8 Hard Coatings on Magnesium 685  
     10.7 Examples of Specific Applications 685  
        10.7.1 Increasing Hardness 685  
        10.7.2 Increasing Wear Resistance 686  
        10.7.3 Abrasive Wear in Petrochemical, Mining, and Agricultural Applications 688  
        10.7.4 Combined Corrosion and wear 689  
        10.7.5 Refurbishing of Worn Parts 690  
        10.7.6 Freestanding Shape Fabrication 690  
     10.8 Summary and Conclusions 691  
     Nomenclature 692  
     References 693  
  Chapter 11: Powders, Wires, Cords, and Rods 698  
     11.1 Powders 699  
        11.1.1 Introduction 699  
        11.1.2 Powders Manufacturing Techniques 701  
           11.1.2.1 Atomization 701  
              (a) Gas Atomization 702  
              (b) Gas Atomization of Amorphous Alloys 704  
              (c) Water Atomization 706  
           11.1.2.2 Fusing and Crushing 708  
           11.1.2.3 Milling and Sintering 708  
           11.1.2.4 Milling 709  
              (a) Ball Milling 709  
              (b) Attrition Milling 711  
              (c) Cryomilling 711  
              (d) Other Techniques 712  
           11.1.2.5 Mechanical Alloying and Milling 712  
           11.1.2.6 Spray Drying 716  
           11.1.2.7 Spheroidization 720  
              (a) Plasma Spheroidization of Powders 720  
              (b) Production of Spherical Particles from Suspension 725  
           11.1.2.8 Cladding 726  
              (a) Mechanical Alloying with Attritors 726  
              (b) Sintering 726  
              (c) Mechanofusion 727  
              (d) Deposition from Gaseous Phase 729  
              (e) Electrolytic Coatings (Also Called Galvanic Plating) 729  
              (f) Chemical Precipitation 730  
           11.1.2.9 Sol-Gel and Solutions 730  
              (a) Sol-Gel 730  
              (b) Solutions 731  
           11.1.2.10 Self-Propagating High-Temperature Synthesis 732  
           11.1.2.11 Other Methods 734  
              (a) Use of Adhesives 734  
              (b) Blends 735  
           11.1.2.12 Powders with a Metal Matrix in Which Hard Nanometer-Sized Particles Are Uniformly Distributed 735  
              (a) Spray Drying Solutions 735  
              (b) Integrated Mechanical and Thermal Activation 736  
              (c) Other Method 736  
           11.1.2.13 Example: Different Powders of ZrO2-8 wt% Y2O3 737  
        11.1.3 Examples of the Influence of Powder Morphologies on Coating Properties 739  
           11.1.3.1 YSZ Powders 739  
           11.1.3.2 Al2O3-TiO2 Powders 739  
           11.1.3.3 WC-Co Powders 740  
           11.1.3.4 Mechanofused Alumina-Stainless Steel Particles 742  
           11.1.3.5 Micrometer-Sized Particles Cold Sprayed 742  
        11.1.4 Conventional Particle Classification Method 742  
           11.1.4.1 Sieving 743  
           11.1.4.2 Air Classification 744  
        11.1.5 Characterization 745  
           11.1.5.1 Sampling 745  
           11.1.5.2 X-ray Diffraction 746  
           11.1.5.3 Elements Distribution 746  
           11.1.5.4 Composition and Purity 747  
           11.1.5.5 Particle Shape 747  
           11.1.5.6 Size Distribution 748  
              (a) Light Scattering 748  
              (b) Coulter Counter 749  
           11.1.5.7 Flow Ability 749  
           11.1.5.8 Apparent Density 750  
           11.1.5.9 Surface Area 751  
        11.1.6 Powder Feeders 751  
           11.1.6.1 Gravity Fed Hoppers 751  
           11.1.6.2 Volumetric Powder Feeders 752  
           11.1.6.3 Fluidized-Bed Feeders 754  
           11.1.6.4 Powder Feeders for Small Particles 754  
              (a) Powder Pump 754  
              (b) Vibration Feeder 755  
           11.1.6.5 Powder Feed Rate Control 755  
        11.1.7 Hazards Related to Particulate Materials 755  
           11.1.7.1 Micrometer-Sized Particles 755  
           11.1.7.2 Nanomete-Sized Particles 756  
     11.2 Wires 757  
        11.2.1 Wire Materials 757  
        11.2.2 Cored Wires 758  
        11.2.3 Wire Feeders 759  
     11.3 Rods 759  
     11.4 Cords 759  
     11.5 Polymer Particles 760  
        11.5.1 General Remarks 760  
           11.5.1.1 Definitions 760  
           11.5.1.2 Polymer Coatings 762  
        11.5.2 Sprayed Polymer Powders 762  
           11.5.2.1 Polymers 763  
           11.5.2.2 Composites Polymer/Ceramic 765  
     11.6 Summary and Conclusions 767  
     Nomenclature 769  
     References 769  
  Chapter 12: Surface Preparation 778  
     12.1 Introduction 778  
     12.2 Machining 778  
     12.3 Cleaning 780  
        12.3.1 Vapor Degreasing 780  
        12.3.2 Baking in an Oven 781  
        12.3.3 Ultrasonic Cleaning 781  
        12.3.4 Wet or Dry Blasting 781  
        12.3.5 Acid Pickling 781  
        12.3.6 Brushing 781  
        12.3.7 Dry Ice Blasting 782  
     12.4 Masking 783  
     12.5 Roughening by Grit Blasting 784  
        12.5.1 Roughness Measurement 784  
        12.5.2 Grit-Blasting Equipment 789  
        12.5.3 Grit-Blasting Nozzles 790  
        12.5.4 Grit Material 791  
           12.5.4.1 Aluminum Oxide 792  
           12.5.4.2 Silicon Carbide Grits 793  
           12.5.4.3 Angular Chilled Iron 793  
           12.5.4.4 Other Grits 794  
        12.5.5 Blasting Parameters 794  
           12.5.5.1 Impact Angle 795  
           12.5.5.2 Blasting Distance 795  
           12.5.5.3 Blasting Pressure 796  
           12.5.5.4 Blasting Time 796  
           12.5.5.5 Influence of the Grit 798  
           12.5.5.6 Substrate Young´s Modulus 799  
        12.5.6 Grit Residues 799  
           12.5.6.1 Grit Residues Characterization 800  
           12.5.6.2 Influence of the Blasting Angle 801  
           12.5.6.3 Influence of the Blasting Time 801  
           12.5.6.4 Influence of the Grit Size 801  
           12.5.6.5 Grit Residue Removal 802  
        12.5.7 Grit Wear 804  
        12.5.8 Residual Stress Induced by Grit Blasting 806  
        12.5.9 Conclusion 807  
     12.6 High-Pressure Water Jet Roughening 809  
        12.6.1 Equipment and Description of the Process 809  
        12.6.2 Water Jet-Blasting Parameters 811  
           12.6.2.1 Blasting Distance 812  
           12.6.2.2 Blasting Time 812  
           12.6.2.3 Water Jet Pressure 813  
           12.6.2.4 Substrate Material 814  
        12.6.3 Comparison Grit and Water Jet Blasting 815  
     12.7 Abrasive Water Jetting 816  
     12.8 Laser Treatment: Protal Process 816  
        12.8.1 Laser Ablation 816  
        12.8.2 Protal Experimental Setup 818  
        12.8.3 Example of Results 819  
           12.8.3.1 Substrate Modifications 819  
           12.8.3.2 Splat Formation 821  
           12.8.3.3 Coating Adhesion 822  
     12.9 Summary and Conclusions 822  
     Nomenclature 823  
     References 824  
  Chapter 13: Conventional Coating Formation 829  
     13.1 Introduction 829  
     13.2 Spray Parameters 832  
     13.3 Physical and Chemical Description of Substrates 834  
        13.3.1 Physical Aspect of Substrate Surfaces 835  
           13.3.1.1 Substrate Surface Topography 835  
           13.3.1.2 Adsorbates and Condensates 835  
        13.3.2 Oxide Layer Development on Metals or Alloys 838  
           13.3.2.1 General Remarks 838  
           13.3.2.2 Different Preheating Processes Used 838  
           13.3.2.3 Examples of Oxide Layer Thickness and Composition 840  
     13.4 Single Particle Impact, Flattening, and Solidification (When Melted) 842  
        13.4.1 Introduction 842  
           13.4.1.1 In a Solid State 842  
           13.4.1.2 Molten Particles 844  
        13.4.2 Different Possibilities of Particle or Splat-Substrate Adhesion 844  
           13.4.2.1 Diffusion 844  
           13.4.2.2 Crystallographic Structure and Chemical Continuity at the Interface Between Splat and Substrate 846  
           13.4.2.3 Adiabatic Softening and Shear Localization 848  
           13.4.2.4 Chemical 851  
           13.4.2.5 Mechanical 852  
              (a) Unmelted Particles 852  
              (b) Molten Particles 853  
        13.4.3 Splat Formation from Unmelted Particles Impacting on Smooth Substrates 854  
           13.4.3.1 Introduction 854  
           13.4.3.2 High-Pressure Cold Spray Conditions 855  
           13.4.3.3 Unmelted Particles (High Power HVOF or HVAF Sprayed) 857  
           13.4.3.4 Unmelted Particles from Low-Pressure Cold Spray 860  
        13.4.4 Splat Formation from Molten Particles Impacting onto Smooth Substrates 861  
           13.4.4.1 Introduction 861  
              (a) Measurements 863  
              (b) Modeling 863  
           13.4.4.2 The First Instants of Impact 864  
           13.4.4.3 Molten Particle Flattening and Solidification 865  
              (a) General Remarks 865  
              (b) Adsorbates and Condensates: Transition Temperature 868  
              (c) Droplet Flattening 871  
              (d) Droplet Solidification 874  
              (e) Splat Fragmentation 879  
              (f) Modeling 880  
              (g) Impact of Cermet Particles Normal to the Substrate 883  
        13.4.5 Splat Formation from Partially Molten Particles on Smooth Substrates 885  
           13.4.5.1 Zirconia Particles Plasma Sprayed 885  
           13.4.5.2 Impact of Polymer Particles 885  
        13.4.6 Splat Formation from Unmelted Particles Off Normal on Smooth Substrates 888  
        13.4.7 Flattening and Solidification of Molten Particle on a Smooth Substrate 888  
           13.4.7.1 Impact Splashing 888  
           13.4.7.2 Flattening Splashing 889  
     13.5 Splat Formation on Rough Surfaces 890  
        13.5.1 Solid Ductile Particles 890  
           13.5.1.1 High Pressure Cold Spray 890  
           13.5.1.2 Low Pressure Cold Spray 891  
        13.5.2 Molten Metal, Alloy, Ceramic, and Cermet Particles 891  
           13.5.2.1 Idealized Surfaces 891  
           13.5.2.2 Real Surfaces 893  
        13.5.3 Polymer Particles 895  
     13.6 Coating Formation 896  
        13.6.1 Molten Particles Deposited by Thermal Spraying 896  
           13.6.1.1 Principles of Coating Generation 896  
           13.6.1.2 Splat Layering: Motionless Torch and Substrate 901  
           13.6.1.3 Splat Layering: Bead Formation 903  
           13.6.1.4 Coating: Pass Formation 905  
              (a) Effect of Spray Pattern 906  
              (b) Other Important Effects 907  
        13.6.2 Polymer Coatings 909  
           13.6.2.1 Control of Particle in-Flight Melting 909  
           13.6.2.2 Substrate Preheating 910  
           13.6.2.3 Coating Temperature Control 910  
           13.6.2.4 Coating Cooling Rate: Crystallinity 911  
           13.6.2.5 Polymer Coatings Post-treatment 911  
           13.6.2.6 Polymer Coatings Reinforced with Hard Particles 912  
        13.6.3 Ductile Particles 914  
        13.6.4 PTA Coatings 918  
        13.6.5 Coatings Obtained by Very Low Pressure Plasma Spray 919  
           13.6.5.1 Dense and Thin Coatings 919  
           13.6.5.2 Coatings from Vapor Phase 920  
        13.6.6 Use of Robot Manipulators 922  
        13.6.7 Coating Structure Modeling 924  
     13.7 Temperature Control of Substrate and Coating in Thermal Spraying 925  
        13.7.1 Introduction 925  
        13.7.2 Splat Cooling 927  
        13.7.3 Cooling Methods 930  
           13.7.3.1 Heat Fluxes Contributing to Substrate and Coating Heating 930  
           13.7.3.2 Cooling Methods 933  
        13.7.4 Coating Mean Temperature Control 935  
     13.8 Influence of Powder Manufacturing Process on Coating Properties 937  
        13.8.1 Chemical Reactions 937  
        13.8.2 Particle Morphology 939  
        13.8.3 Nanostructured Agglomerated Particles 941  
     13.9 Influence of Wire, Cored Wires, Rods, and Cords on Coating Properties 942  
        13.9.1 Flame or HVOF or HVAF-Sprayed Wires 942  
           13.9.1.1 Flame Spraying 942  
           13.9.1.2 HVOF Spraying 943  
           13.9.1.3 HVAF Spraying 943  
        13.9.2 Flame-Sprayed Rods 944  
        13.9.3 Arc Sprayed 944  
           13.9.3.1 Wires 944  
           13.9.3.2 Cored Wires 945  
              (a) Metals 945  
              (b) Ceramics and Cermets 945  
     13.10 Stresses Within Coatings 946  
        13.10.1 Residual Stress 946  
           13.10.1.1 Thermal Stresses 947  
              (a) Quenching Stress 948  
              (b) Expansion Mismatch Stress 950  
              (c) Stress Due to Temperature Gradient 951  
           13.10.1.2 Mechanically Induced Stresses 951  
              (a) Grit Blasting 951  
              (b) Peening Effect 952  
              (c) Other Stresses 954  
           13.10.1.3 Resulting Residual Stress 955  
           13.10.1.4 Effect of Residual Stress on Coating Adhesion 956  
        13.10.2 Service Stresses 959  
           13.10.2.1 Intrinsic Stresses 960  
           13.10.2.2 Thermal Stresses 960  
              (a) Thermal Barrier Coatings 960  
              (b) Functionally Graded Materials 962  
           13.10.2.3 Fatigue of Tribological Coatings 962  
        13.10.3 Conclusions Relative to Residual Stresses 963  
     13.11 Finishing Coatings 963  
        13.11.1 Machining (Turning, Milling) 963  
        13.11.2 Grinding 963  
        13.11.3 Abrasive Belt Grinding and Polishing 964  
        13.11.4 Other Finishing Methods 965  
           13.11.4.1 Hand Stoning, Buffing, and Polishing 965  
           13.11.4.2 Tumbling and Burnishing 965  
     13.12 Post Treatment of Coatings 965  
        13.12.1 Fusion of Self-Fluxing Alloys 966  
           13.12.1.1 Principle 966  
           13.12.1.2 Fusing Processes 966  
           13.12.1.3 Fusing Problems 967  
           13.12.1.4 Examples of Results 967  
        13.12.2 Heat Treating or Annealing 968  
           13.12.2.1 Definition 968  
           13.12.2.2 Examples of Results 968  
        13.12.3 Hot Isostatic Pressing 970  
        13.12.4 Austempering Heat Treatment 971  
        13.12.5 Laser Glazing 971  
           13.12.5.1 Continuous Wave (c.w.) CO2 Lasers 972  
           13.12.5.2 Pulsed CO2 Lasers 973  
           13.12.5.3 Pulsed Nd/YAG Lasers 973  
           13.12.5.4 Power Diode Laser 974  
        13.12.6 Sealing 974  
           13.12.6.1 General Remarks 974  
           13.12.6.2 Sealing Processes 975  
              (a) Organic Sealants 975  
              (b) Inorganic Sealants 976  
              (c) Metals 976  
              (d) Other Means 976  
           13.12.6.3 Examples of Results 976  
              (a) Organic Sealants 976  
              (b) Inorganic Sealant 977  
        13.12.7 Spark Plasma Sintering 978  
        13.12.8 Peening or Rolling Densification 979  
        13.12.9 Diffusion 980  
     13.13 Summary and Conclusions 980  
     Nomenclature 982  
     References 984  
  Chapter 14: Nanostructured or Finely Structured Coatings 1003  
     14.1 Introduction 1004  
        14.1.1 Why Nanostructured Coatings 1004  
        14.1.2 How to Spray Nanostructure Coatings? 1007  
     14.2 Spraying of Complex Alloys Containing Multiple Elements to Form Amorphous Coatings 1009  
        14.2.1 Amorphous Alloys Containing Phosphorus 1009  
        14.2.2 NiCrB and FeCrB Alloys 1010  
        14.2.3 Iron-Based Amorphous Alloys 1011  
     14.3 Agglomerated Ceramic Particles Spraying with Hot Gases 1015  
        14.3.1 Spray Conditions 1015  
        14.3.2 Applications 1026  
           14.3.2.1 Wear-Resistant Coatings 1027  
           14.3.2.2 Abradable Coatings 1030  
           14.3.2.3 Thermal Barrier Coatings 1032  
           14.3.2.4 Biomedical Applications 1034  
           14.3.2.5 Other Applications 1034  
     14.4 Attrition or Ball Milled Cermets or Alloy Particles Sprayed with Hot Gases 1035  
        14.4.1 Alloys 1036  
        14.4.2 Cermets 1037  
           14.4.2.1 WC-Co 1037  
           14.4.2.2 Cr3C2-NiCr 1038  
           14.4.2.3 Other Cermets 1038  
     14.5 Spraying Hypereutectic Alloys with Hot Gases 1039  
     14.6 Production of Nanostructured Coatings by Cold Spray 1041  
        14.6.1 Alloys 1041  
        14.6.2 Composites 1042  
        14.6.3 Amorphous Alloys 1044  
     14.7 Solutions or Suspensions Spraying 1045  
        14.7.1 Sub-Micrometer and Nanometer-Sized Particles in Plasma or HVOF Jets 1046  
           14.7.1.1 Particle Inertia 1046  
           14.7.1.2 Particle Trajectory 1048  
           14.7.1.3 Particle Flattening 1051  
           14.7.1.4 Particle Heat Transfer 1052  
        14.7.2 Liquid Injection 1052  
           14.7.2.1 Radial Injection into Plasma and HVOF Jets 1052  
           14.7.2.2 Axial Injection 1055  
              (a) d.c. Plasmas 1055  
              (b) HVOF 1056  
              (c) r.f. Plasmas 1057  
        14.7.3 Spray Torches Used 1059  
           14.7.3.1 General Remarks 1059  
           14.7.3.2 d.c. Plasma Torches Used 1060  
           14.7.3.3 r.f. Torches Used 1062  
           14.7.3.4 HVOF Torches Used 1062  
        14.7.4 Solutions or Suspensions Preparation 1062  
           14.7.4.1 Solutions 1063  
           14.7.4.2 Suspensions 1065  
           14.7.4.3 Sol Preparation: A New Process Called ``PROSOL´´ 1066  
           14.7.4.4 Suspensions of Amorphous Powders 1066  
        14.7.5 Liquid Stream: Hot Flow Interactions 1067  
           14.7.5.1 General Remarks 1067  
           14.7.5.2 Solutions 1070  
           14.7.5.3 Suspensions 1075  
           14.7.5.4 Conclusions 1077  
        14.7.6 Coating Manufacturing Mechanisms 1078  
           14.7.6.1 Splats 1078  
              (a) Solutions 1078  
              (b) Suspensions 1079  
           14.7.6.2 Spray Beads 1081  
              (a) Solutions 1082  
              (b) Suspensions 1084  
           14.7.6.3 Coatings 1085  
              (a) Solutions 1086  
              (b) Suspensions 1087  
                 (i) Plasma Spraying 1087  
                    Influence of Particle Morphologies and Size Distributions 1087  
                    Unmolten Tiny Particles 1096  
                    Lamellar or Granular Structures 1098  
                    Spraying Mixtures of Powders 1099  
                 (ii) HVOF Spraying (HVSFS) 1101  
           14.7.6.4 Environmental Impact (Life Assessment Impact: LCA) 1104  
        14.7.7 Applications 1105  
           14.7.7.1 Thermal Barrier Coatings 1105  
              (a) Solutions 1105  
              (b) Suspensions 1106  
           14.7.7.2 Solid Oxy-Fuel Cell Components 1107  
           14.7.7.3 Wear-Resistant Coatings 1108  
              (a) WC-Co 1108  
              (b) Alumina 1108  
              (c) Zirconia-Alumina 1110  
              (d) Alumina-Zirconia-Yttria 1111  
              (e) TiO2-TiC Coatings 1111  
           14.7.7.4 Titania Photo-Catalytic Coatings 1111  
           14.7.7.5 Coatings for Medical Applications 1112  
           14.7.7.6 Anti-Corrosion Coatings 1114  
           14.7.7.7 SnO2 Layers 1114  
           14.7.7.8 Inconel Coatings 1114  
           14.7.7.9 Antierosion Coatings 1115  
           14.7.7.10 Adhesive Layer on Smooth and Thin Substrate 1115  
     14.8 Summary and Conclusions 1115  
     Nomenclature 1117  
     References 1118  
  Chapter 15: Coating Characterizations 1134  
     15.1 Introduction to Coating Characterizations and Testing Methods 1136  
        15.1.1 Differences Between Coatings and Bulk Materials 1136  
        15.1.2 Characterization and Testing Methods Used for Coatings 1137  
        15.1.3 Statistical Methods 1138  
           15.1.3.1 (a) Normal Distribution 1139  
           15.1.3.2 (b) Weibull Statistic 1140  
           15.1.3.3 (c) Variance 1141  
     15.2 Nondestructive Methods 1142  
        15.2.1 Visual Inspection 1142  
        15.2.2 Laser Inspection 1143  
        15.2.3 Coordinate Measuring Machines 1143  
        15.2.4 Machine Vision and Robotic Evaluation 1143  
        15.2.5 Acoustic Emission 1144  
        15.2.6 Laser-Ultrasonic Techniques 1144  
        15.2.7 Thermography 1145  
        15.2.8 Coating Thickness 1146  
     15.3 Metallography and Image Analysis 1146  
        15.3.1 Coating Preparation 1147  
           15.3.1.1 Sectioning 1147  
              (a) Abrasive Cutting 1147  
              (b) Precision Sectioning 1147  
           15.3.1.2 Mounting 1148  
           15.3.1.3 Grinding 1149  
           15.3.1.4 Polishing 1150  
           15.3.1.5 Etching 1151  
           15.3.1.6 Focused Ion Beam 1151  
           15.3.1.7 Examples of Conventional Coatings Preparation 1151  
        15.3.2 Microscopy 1152  
           15.3.2.1 Optical Microscopy 1152  
           15.3.2.2 Scanning Electron Microscopy 1153  
           15.3.2.3 Image Analysis 1155  
           15.3.2.4 Atomic Force Microscopy 1156  
           15.3.2.5 Transmission Electron Microscopy 1157  
     15.4 Materials Characterization 1158  
        15.4.1 X-Ray Spectroscopy or X-Ray Fluorescence 1159  
        15.4.2 Infrared Spectroscopy 1159  
        15.4.3 Mössbauer Spectroscopy 1160  
        15.4.4 X-Ray Diffraction 1160  
        15.4.5 Small- and Ultrasmall-Angle X-Ray Diffraction (USAXF) 1162  
        15.4.6 Neutron Scattering 1164  
        15.4.7 X-Ray Absorption Spectroscopy 1166  
        15.4.8 Electron Probe X-Ray Microanalysis 1167  
        15.4.9 Auger Electron Spectroscopy 1167  
        15.4.10 X-Ray Photoelectron Spectroscopy 1167  
        15.4.11 Other Techniques 1168  
     15.5 Void Content and Network Architecture 1168  
        15.5.1 Archimedean Porosimetry 1170  
        15.5.2 Mercury Intrusion Porosimetry (MIP) 1171  
        15.5.3 Gas Permeation and Pycnometry 1171  
        15.5.4 Small-Angle Neutrons Scattering 1173  
        15.5.5 Ultrasmall-Angle X-Ray Scattering 1174  
        15.5.6 Stereological Protocols (Coupled to Image Analysis) (ST) 1176  
        15.5.7 Electrochemical Impedance Spectroscopy 1181  
     15.6 Adhesion-Cohesion 1182  
        15.6.1 Introduction 1182  
        15.6.2 Simple Adhesion Tensile Test 1183  
        15.6.3 Other Types of Tensile Tests 1185  
        15.6.4 Shear Stress 1187  
        15.6.5 Fracture Mechanics Approach 1188  
        15.6.6 Bending Test: Adhesion and Interface Toughness Measurements 1190  
        15.6.7 Indentation: Interface Toughness Measurement 1192  
        15.6.8 Other Methods 1194  
           15.6.8.1 Double Cantilever Beam Test 1194  
           15.6.8.2 Double Torsion Test 1195  
           15.6.8.3 Scratch Test 1195  
           15.6.8.4 Laser Shock 1196  
              (a) Coating Adhesion 1196  
              (b) Splat Adhesion 1197  
     15.7 Mechanical Properties 1198  
        15.7.1 Hardness and Indentation Test 1198  
           15.7.1.1 Hardness 1198  
           15.7.1.2 Indentation 1202  
        15.7.2 Young´s Modulus 1205  
           15.7.2.1 Indentation 1205  
           15.7.2.2 Four-Points Bending 1206  
           15.7.2.3 Knoop Hardness 1206  
           15.7.2.4 Ultrasound Propagation 1206  
        15.7.3 Toughness 1207  
        15.7.4 Residual Stress 1208  
           15.7.4.1 X-Ray Diffraction 1208  
           15.7.4.2 Neutron Diffraction 1209  
           15.7.4.3 Material Removal 1210  
              (a) Layer Removal Method 1211  
              (b) Hole Drilling Method 1211  
           15.7.4.4 Bending 1212  
     15.8 Thermal Properties 1214  
        15.8.1 Mass Density 1214  
        15.8.2 Expansion Coefficient 1215  
        15.8.3 Thermal Conductivity and Thermal Diffusivity 1215  
        15.8.4 Specific Heat at Constant Pressure 1217  
        15.8.5 Thermal Shock Resistance 1218  
        15.8.6 Differential Thermal Analysis, Thermogravimetry, and Differential Scanning Calorimetry 1220  
           15.8.6.1 (a) Phase Changes 1221  
           15.8.6.2 (b) Reactive Plasma Spraying 1222  
           15.8.6.3 (c) Oxidation Resistance 1223  
     15.9 Wear Resistance 1224  
        15.9.1 Abrasive Wears 1224  
        15.9.2 Adhesive Wears 1225  
        15.9.3 Erosive Wear 1227  
        15.9.4 Surface Fatigue 1230  
        15.9.5 Corrosive Wears 1234  
        15.9.6 Fretting 1238  
     15.10 Corrosion Resistance 1239  
        15.10.1 General Remarks 1239  
        15.10.2 Corrosion Characterization 1243  
           15.10.2.1 (a) Electrochemical Measurements 1243  
           15.10.2.2 (b) Fog and Salt-Spray Test 1245  
           15.10.2.3 (c) Molten Salt 1245  
           15.10.2.4 (d) Oxidation 1246  
     15.11 Summary and Conclusions 1246  
     Nomenclature 1247  
     ASTM Standards 1249  
        A: Adhesion-Cohesion 1249  
        C: Corrosion 1250  
        M: Mechanical Properties 1251  
        Ma: Materials Characterization 1252  
        Me: Metallography and Image Analysis 1253  
        ND: Non-destructive Methods 1253  
        S: Statistical Methods 1253  
        T: Thermal Properties 1253  
        V: Void Content and Network Architecture 1254  
        W: Wear 1254  
     References 1256  
  Chapter 16: Process Diagnostics and Online Monitoring and Control 1272  
     16.1 Introduction 1273  
        16.1.1 What Is Expected from Thermal-Sprayed Coatings? 1273  
        16.1.2 Coatings Repeatability, Reliability, and Reproducibility 1273  
        16.1.3 How Sprayed Coatings Quality Was Improved Through the Spray Process Monitoring 1276  
           16.1.3.1 At the Beginning 1276  
           16.1.3.2 Eighties-Nineties 1276  
           16.1.3.3 Mid-1990s to Now: Development of Sensors 1278  
        16.1.4 Spray Process Parameters That Should Be Controlled 1278  
     16.2 High-Energy Jets Characterization 1279  
        16.2.1 Plasma Jets 1280  
           16.2.1.1 Temperature Measurements 1280  
              (a) Emission Spectroscopy of Symmetrical Jets 1280  
              (b) Emission Spectroscopy of Nonsymmetrical Jets 1283  
              (c) Laser Spectroscopy for Jets at Temperatures Below 8,000 K 1284  
           16.2.1.2 Velocity Measurements 1284  
           16.2.1.3 Turbulences Characterization 1285  
           16.2.1.4 Electrode Erosion 1286  
        16.2.2 Flames and Cold Spray 1287  
           16.2.2.1 Flame Temperatures 1288  
              (a) Laser 1288  
              (b) Thermocouple 1289  
           16.2.2.2 Flame and Cold Flow Velocity Measurements: PIV 1289  
           16.2.2.3 Measurements Based on Laser Scattering 1290  
           16.2.2.4 Turbulences 1290  
     16.3 Sensors 1290  
        16.3.1 Hot Gases Flow: Enthalpy Probe 1291  
           16.3.1.1 Incompressible Jets 1292  
           16.3.1.2 Subsonic Jets 1293  
           16.3.1.3 Supersonic Jets 1293  
           16.3.1.4 Precision of Measurements 1293  
           16.3.1.5 Example of Results 1294  
        16.3.2 Particles In-Flight Distribution 1295  
           16.3.2.1 Hot Particles 1297  
           16.3.2.2 Cold Particles 1302  
           16.3.2.3 Liquid Injection 1303  
        16.3.3 In-Flight Hot Particle Temperature and Velocity Measurement 1305  
           16.3.3.1 Ensemble or Local Measurements 1305  
           16.3.3.2 Particle Temperature and Velocity Measurements 1310  
              (a) Principle of the Different Sensors 1310  
              (b) Calibration Problems 1313  
              (c) Example of Results 1313  
                 (i) Plasma Spraying 1313  
                 (ii) HVOF Spraying 1319  
                 (iii) Wire Arc 1321  
           16.3.3.3 Transient Measurements of Particle Temperatures and Velocities 1321  
           16.3.3.4 Particle Temperature Measurements 1323  
           16.3.3.5 Particle Size or Diameter 1323  
        16.3.4 In-Flight Velocity Measurements of Cold Particles 1324  
        16.3.5 Are Such Measurements Sufficient to Monitor Coating Properties? 1327  
           16.3.5.1 Conventional Hot Processes 1327  
           16.3.5.2 Cold Spray 1329  
        16.3.6 Coating Under Formation 1329  
           16.3.6.1 Hot Gases Heat Flux 1329  
           16.3.6.2 Substrate Temperature Control 1330  
           16.3.6.3 Stress Development During Spraying 1330  
           16.3.6.4 Coating Thickness Measurement 1331  
     16.4 Online Control or Monitoring? 1332  
        16.4.1 Coating Properties Monitoring 1332  
           16.4.1.1 Spray Pattern Through Robot Trajectory Planning 1332  
           16.4.1.2 Coating Monitoring Through In-Flight Particle Parameters 1333  
           16.4.1.3 Artificial Neural Networks and Fuzzy Logic 1336  
        16.4.2 Online Control? 1341  
     16.5 Other Possible Measurements 1341  
        16.5.1 Particle Vaporization 1341  
        16.5.2 Splat Formation 1342  
           16.5.2.1 Case of Molten or Semimolten Particles 1342  
              (a) Interface Splat-Substrate 1342  
              (b) Modeling 1343  
              (c) Flattening and Cooling Measurements 1344  
           16.5.2.2 Case of Unmelted Particles 1348  
        16.5.3 Plasma-Liquid Injection 1349  
           16.5.3.1 Particle Imaging Velocity 1349  
           16.5.3.2 Shadography 1350  
           16.5.3.3 Infrared Detection of Liquid Injection 1353  
     16.6 Summary and Conclusions 1354  
     Nomenclature 1357  
     References 1358  
  Chapter 17: Process Integration 1372  
     17.1 Introduction 1373  
     17.2 Potential and Real Risks 1373  
        17.2.1 Powders: Respiratory Problems and Explosions 1374  
           17.2.1.1 Particles and Pulmonary System 1374  
           17.2.1.2 Toxicity of Powders 1375  
           17.2.1.3 Explosiveness of Powders 1375  
        17.2.2 Gases 1376  
           17.2.2.1 Gases Used for the Spray Process 1376  
           17.2.2.2 Gases Resulting from the Spray Process 1377  
           17.2.2.3 Gases Storage 1378  
        17.2.3 Prevention and Safety Measures 1378  
           17.2.3.1 Powders 1379  
           17.2.3.2 Gases 1379  
        17.2.4 Other Risks 1380  
           17.2.4.1 Noise 1380  
           17.2.4.2 Radiation 1381  
           17.2.4.3 Thermal Risks 1382  
           17.2.4.4 Electric Risks 1382  
           17.2.4.5 Risks Associated with the Use of Robots 1382  
     17.3 Ancillary Equipment 1383  
        17.3.1 The Spray Booth 1383  
           17.3.1.1 What for? 1383  
           17.3.1.2 Typical Design 1383  
        17.3.2 Exhaust Systems 1386  
        17.3.3 Power Supply 1386  
        17.3.4 Gas Supply 1387  
        17.3.5 Compressed Air Supply 1387  
        17.3.6 Cooling Water 1387  
        17.3.7 Micrometer-Sized Powder Feeders and Solutions or Suspensions Feeders 1388  
        17.3.8 Gun Movements 1389  
        17.3.9 Control Panel 1389  
     17.4 Controlled Atmosphere 1389  
        17.4.1 Soft Vacuum Plasma Spraying 1389  
        17.4.2 Vapor Phase Deposition 1394  
        17.4.3 Inert Plasma Spraying 1395  
        17.4.4 Cold Spray with Helium 1396  
     17.5 Finishing and Post-Treatment of Coatings 1396  
        17.5.1 Finishing 1397  
           17.5.1.1 Machining (Turning, Milling) 1397  
           17.5.1.2 Grinding 1397  
           17.5.1.3 Abrasive Belt Grinding and Polishing 1398  
           17.5.1.4 Super Finishing 1399  
           17.5.1.5 Other Finishing Methods 1399  
              (a) Hand Stoning, Buffing, and Polishing 1399  
              (b) Tumbling and Burnishing 1399  
        17.5.2 Fusion of Self-Fluxing Alloys 1399  
           17.5.2.1 Principle 1399  
           17.5.2.2 Fusing Processes 1400  
           17.5.2.3 Examples of Results 1401  
        17.5.3 Heat Treating or Annealing 1402  
           17.5.3.1 Definition 1402  
           17.5.3.2 Examples of Results 1402  
        17.5.4 Hot Isostatic Pressing 1404  
        17.5.5 Austempering Heat Treatment 1405  
        17.5.6 Laser Glazing 1405  
        17.5.7 Sealing 1408  
           17.5.7.1 General Remarks 1408  
           17.5.7.2 Sealing Processes 1408  
              (a) Organic Sealants 1409  
              (b) Inorganic Sealants 1409  
              (c) Metals 1410  
              (d) Other Means 1410  
           17.5.7.3 Examples of Results 1410  
              (a) Organic Sealants 1410  
              (b) Inorganic Sealant 1410  
        17.5.8 Spark Plasma Sintering 1413  
        17.5.9 Peening or Rolling Densification 1413  
        17.5.10 Diffusion 1414  
     17.6 Summary and Conclusions 1414  
     Nomenclature 1415  
     References 1415  
  Chapter 18: Industrial Applications of Thermal Spraying Technology 1422  
     18.1 Introduction 1424  
     18.2 Advantages and Limitations of the Different Spray Processes 1425  
        18.2.1 Flame Spraying 1425  
           18.2.1.1 Powders 1426  
              (a) As-Sprayed Coating 1426  
              (b) Remelted Coating (Flame, Furnace, Induction) 1426  
           18.2.1.2 Wire, Rod, or Cord 1426  
        18.2.2 D-Gun Spraying 1427  
        18.2.3 HVOF-HVAF Spraying 1427  
        18.2.4 Wire Arc Spraying 1428  
        18.2.5 Plasma Spraying 1428  
           18.2.5.1 Air Plasma Spraying 1429  
           18.2.5.2 Inert Atmosphere Plasma Spraying 1429  
           18.2.5.3 Vacuum d.c. Plasma Spraying (VPS) 1429  
           18.2.5.4 Induction Plasma Spraying (VIPS) 1430  
        18.2.6 Plasma-Transferred Arcs (PTA) 1430  
        18.2.7 Plasma Transferred Arc 1431  
        18.2.8 Cold Spray 1432  
     18.3 Thermal-Sprayed Coating Applications 1432  
        18.3.1 Wear Resistant Coatings 1433  
           18.3.1.1 Abrasive Wears 1433  
              (a) Self-Fluxing Alloys 1433  
              (b) Cermet Coatings, Especially Those HVOF or HVAF Sprayed 1434  
           18.3.1.2 Erosive Wear 1436  
           18.3.1.3 Friction and Adhesive Wears 1438  
              (a) Ceramic Materials 1439  
              (b) Cermets 1440  
              (c) Metals 1442  
              (d) Polymers 1443  
           18.3.1.4 Scuffing 1443  
           18.3.1.5 Cavitation Wear 1444  
           18.3.1.6 Surface Fatigue Wear 1445  
           18.3.1.7 Wear by Fretting and Fretting-Corrosion 1447  
           18.3.1.8 Thermal Fatigue and Thermal Shock 1449  
              (a) Thermal Fatigue 1449  
              (b) Thermal Shock 1450  
           18.3.1.9 Wear by Very High Stresses 1452  
        18.3.2 Corrosion and Oxidation Resistant Coating 1454  
           18.3.2.1 Room Temperature Corrosion 1454  
              (a) Atmospheric and Marine Corrosion 1454  
              (b) Chemical or Parachemical Corrosion 1456  
           18.3.2.2 High Temperature Corrosion 1459  
           18.3.2.3 Oxidation 1462  
           18.3.2.4 Corrosive Wear 1464  
              (a) Low Temperature 1465  
              (b) High Temperature 1466  
        18.3.3 Thermal Protection Coatings 1467  
           18.3.3.1 Thermal Barrier Coatings for Aero Engines 1468  
              (a) Conventional Plasma Spraying 1469  
              (b) New Spray Processes 1472  
              (c) Coatings Against Fretting 1473  
           18.3.3.2 Thermal Barrier Coatings for Land-Based Turbines 1473  
           18.3.3.3 Thermal Barrier Coatings for Diesels 1475  
           18.3.3.4 Other Applications 1475  
        18.3.4 Clearance Control Coatings 1476  
        18.3.5 Bonding Coatings 1478  
        18.3.6 Electrical and Electronic Coatings 1479  
           18.3.6.1 Dielectrics 1480  
           18.3.6.2 Resistors and Conductors 1481  
           18.3.6.3 Electronic Devices 1481  
           18.3.6.4 Electromagnetic Shielding 1482  
           18.3.6.5 Magnetic Materials 1482  
           18.3.6.6 Sensor Applications 1483  
           18.3.6.7 Other Applications 1483  
        18.3.7 Freestanding Spray-Formed Parts 1483  
        18.3.8 Medical Applications 1487  
        18.3.9 Replacement of Hard Chromium 1490  
        18.3.10 Applications Under Developments 1492  
           18.3.10.1 Solid Oxide Fuel Cells 1492  
           18.3.10.2 Other Sensors 1493  
           18.3.10.3 Decorative Coatings 1494  
           18.3.10.4 Spent Nuclear Fuel 1494  
           18.3.10.5 Combined Cycle Power Plant Combinations 1495  
           18.3.10.6 Future Nuclear Fusion Reactor 1495  
     18.4 Thermal-Sprayed Coatings by Industry 1495  
        18.4.1 Aerospace 1496  
        18.4.2 Land-Based Turbines 1499  
        18.4.3 Automotive 1499  
           18.4.3.1 Power Train Components 1500  
           18.4.3.2 Rebuilding and Dimensional Restoration 1502  
           18.4.3.3 Thermal Barrier Coatings (See Sect.18.3.3.3) 1502  
           18.4.3.4 Other Applications 1502  
        18.4.4 Electrical and Electronic Industries 1502  
        18.4.5 Corrosion Applications for Land-Based and Marine Applications 1504  
           18.4.5.1 Sacrificial Coatings 1504  
           18.4.5.2 No-Sacrificial Coatings 1506  
        18.4.6 Medical Applications 1507  
        18.4.7 Ceramic and Glass Manufacturing 1508  
        18.4.8 Printing Industry 1509  
        18.4.9 Pulp and Paper 1511  
        18.4.10 Metal Processing Industries 1513  
           18.4.10.1 Components of Furnaces or Boilers 1513  
           18.4.10.2 Molds 1515  
           18.4.10.3 Die Casting 1515  
           18.4.10.4 Entrance and Exit Rolls of Steel Processing Line 1516  
           18.4.10.5 Galvanized and Aluminized Steel Sheets 1516  
        18.4.11 Petroleum and Chemical Industries 1516  
        18.4.12 Electrical Utilities 1519  
           18.4.12.1 For Fluidized Bed Combustor Boilers 1519  
           18.4.12.2 For Coal-Fired Boilers 1519  
        18.4.13 Textile and Plastic Industries 1520  
        18.4.14 Polymers 1520  
        18.4.15 Reclamation 1522  
        18.4.16 Other Applications 1524  
        18.4.17 Thermal-Sprayed Coatings in the Different Countries 1526  
     18.5 Economic Analysis of the Different Spray Processes 1534  
        18.5.1 Different Cost Contribution Factors 1534  
        18.5.2 Direct Cost Factors 1535  
           18.5.2.1 The Cost of Materials 1535  
           18.5.2.2 The Cost of Gases, Electricity, and Consumables 1537  
           18.5.2.3 Direct Labor Cost 1541  
           18.5.2.4 Direct Cost for Quality Control, Packing, and Labeling 1541  
        18.5.3 Indirect or Fixed Cost Factors 1542  
           18.5.3.1 Capital Investments 1542  
           18.5.3.2 Other Indirect or Fixed Costs 1543  
        18.5.4 Few Examples 1543  
           18.5.4.1 Cost of d.c. Plasma Spraying of Partially Yttria-Stabilized Zirconia 1543  
           18.5.4.2 MCrAlY Coatings Sprayed by Arc Spray and High-Power Plasma Spraying 1545  
           18.5.4.3 Manual Wire Flame Zn Coating per Square Meter 1546  
           18.5.4.4 Cost Comparison Between APS and Wire Arc for NiAl (Aeronautic) 1546  
           18.5.4.5 Cost Comparison for Hard Chromium Replacement on a Jack 1548  
     18.6 Summary and Conclusions 1550  
     Appendix: Use of the Different Spray Materials 1551  
        A.1 Metals 1551  
        A.2 Ceramics (Oxides) 1560  
        A.3 Cermets 1563  
        A.4 Abradables 1564  
     Nomenclature 1565  
     References 1566  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz