Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Soft Robotics - Transferring Theory to Application
  Großes Bild
 
Soft Robotics - Transferring Theory to Application
von: Alexander Verl, Alin Albu-Schäffer, Oliver Brock, Annika Raatz
Springer-Verlag, 2015
ISBN: 9783662445068
293 Seiten, Download: 16390 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 5  
  Contents 7  
  Part I Outline 9  
     1 Introduction 10  
     2 Abstracts 12  
  Part II Sensors and Actuators 24  
     3 New Concepts for Distributed Actuators and Their Control 25  
        3.1 Introduction 25  
        3.2 Shape Memory Alloys as Flexible Actuators 27  
           3.2.1 Basics 27  
           3.2.2 Control Design 29  
           3.2.3 Structural Integration 31  
        3.3 Control and Feedback Control of Distributed Actuators 34  
        3.4 Conclusions and Outlook 37  
        3.5 References 37  
     4 Artificial Muscles, Made of Dielectric Elastomer Actuators A Promising Solution for Inherently Compliant Future Robots 39  
        4.1 Drawbacks of Prevailing Robotic Actuators 39  
        4.2 Benefits of DEAs in Soft Robotics 41  
           4.2.1 Capability of Energy Recuperation 41  
           4.2.2 Intrinsic Compliance and Adaptability 42  
           4.2.3 Outstanding Power-to-Weight Ratio 42  
           4.2.4 Capability of Self-sensing 42  
           4.2.5 Noiseless Actuation 43  
        4.3 Current Research Efforts 43  
           4.3.1 Manufacturing Artificial Muscles Based on DEA 43  
           4.3.2 Lightweight Power Electronics 45  
        4.4 Summary and Future Challenges 46  
        4.5 References 46  
     5 Musculoskeletal Robots and Wearable Devices on the Basis of Cable-driven Actuators 48  
        5.1 Introduction 48  
        5.2 Short State of the Art: From Musculoskeletal Robots to Wearable Devices 49  
        5.3 The Myorobotics Toolkit 51  
           5.3.1 Overview 51  
           5.3.2 Design Primitives Library (DPL) 52  
        5.4 Wearable Cable-Driven Robots 54  
           5.4.1 Requirements and Structure of a Body Worn Lifting Aid 55  
           5.4.2 Body Worn Lifting Aid 56  
        5.5 References 57  
     6 Capacitive Tactile Proximity Sensing: From Signal Processing to Applications in Manipulation and Safe Human-Robot Interaction 60  
        6.1 Introduction 60  
        6.2 Signal Processing and Feature Extraction 61  
           6.2.1 Tracking 63  
           6.2.2 Task and Environment Contexts for Feature Extraction 63  
        6.3 Applications 65  
           6.3.1 Proximity Servoing 65  
           6.3.2 Preshaping 66  
           6.3.3 Combined Haptic and Proximity-Based Exploration 68  
        6.4 Conclusions and Future Work 68  
        6.5 References 70  
  Part III Modeling, Simulation and Control 72  
     7 Perception of Deformable Objects and Compliant Manipulation for Service Robots 73  
        7.1 Introduction 73  
        7.2 Compliant Control for Service Robots 74  
           7.2.1 Compliant Task-Space Control 75  
           7.2.2 Applications of Compliant Control in Everyday Environments 77  
           7.2.3 Public Demonstrations 79  
        7.3 Object Manipulation Skill Transfer 80  
           7.3.1 Efficient RGB-D Deformable Registration 80  
           7.3.2 Skill Transfer through Shape Matching 81  
           7.3.3 Results 82  
        7.4 Conclusions 83  
        7.5 References 83  
     8 Soft Robot Control with a Behaviour-Based Architecture 85  
        8.1 Introduction 85  
        8.2 The Behaviour-based Architecture iB2C 86  
           8.2.1 Design of Complex Behaviour Networks 88  
           8.2.2 Oscillation Detection in Behaviour Networks 89  
           8.2.3 Verification of Behaviour Networks 90  
        8.3 Soft Control with the iB2C 92  
        8.4 Conclusion and Future Work 93  
        8.5 References 94  
     9 Optimal Exploitation of Soft-Robot Dynamics 96  
        9.1 Introduction 96  
        9.2 Problem Formulation 97  
        9.3 Optimal Controls for Constrained Deflection 98  
        9.4 Experiments 101  
        9.5 Conclusion 102  
        9.6 References 102  
     10 Simulation Technology for Soft Robotics Applications 104  
        10.1 Introduction 104  
        10.2 State of the Art 105  
           10.2.1 Simulation in “Classical” Robotics 106  
           10.2.2 Simulation in Soft Robotics 107  
        10.3 The Basic Concepts of eRobotics 109  
           10.3.1 3D Simulation-Based Development 109  
           10.3.2 The Virtual Testbed Approach 109  
        10.4 Integrating Simulation Algorithms 112  
           10.4.1 Multi-Domain Modeling with Bond Graphs 113  
           10.4.2 Multi-Domain Modeling by Integrating Single-Domain Tools 114  
        10.5 Simulation of Actuated and Controlled Manipulators 115  
           10.5.1 Simulation of Compliant Robots 116  
           10.5.2 Generation of a Compliant Trajectory 116  
           10.5.3 Torque-Based Tracking of the Compliant Trajectory 117  
           10.5.4 Drive Train Modeling and Simulation 117  
           10.5.5 Torque Control 117  
        10.6 Applications 118  
           10.6.1 FESTO Bionic Handling Assistant 118  
           10.6.2 Soft Physical Human Robot Interaction 118  
           10.6.3 Terramechanics 120  
        10.7 Conclusions and Outlook 120  
        10.8 References 121  
     11 Concepts of Softness for Legged Locomotion and Their Assessment 124  
        11.1 Biomechanics of Legged Locomotion 124  
        11.2 Legged Locomotion in Robotics 126  
        11.3 Biomechanical Concepts for Legged Locomotion 128  
        11.4 Radial and Tangential Leg Function 129  
        11.5 Leg Segmentation and Multi-Joint Structures 131  
        11.6 From Biomechanical Concepts to Robots 131  
        11.7 Assessment of Locomotor Function in Biomechanics and Robotics 133  
        11.8 Outlook 134  
        11.9 References 135  
     12 Mechanics and Thermodynamics of Biological Muscle A Simple Model Approach 138  
        12.1 The Biological Muscle Drives the Animal Motion 138  
        12.2 The Biological Muscle’s Various Design Features 139  
           12.2.1 The Biological Muscle’s Passive Mechanic Characteristics 139  
           12.2.2 Active Muscle and Stability 141  
           12.2.3 Mechanical Efficiency and Thermodynamic Enthalpy Rate 143  
        12.3 Designing a Technical Actuator from the Biological Prototype 144  
        12.4 Next Generation of Bio-inspired and Bio-like Actuators 145  
        12.5 References 146  
  Part IV Materials, Design and Manufacturing 149  
     13 Nanostructured Materials for Soft Robotics – Sensors and Actuators 150  
        13.1 Introduction 150  
        13.2 Actuators 152  
        13.3 Touch Sensors 156  
        13.4 Conclusions and Perspectives 158  
        13.5 References 158  
     14 Fibrous Materials and Textiles for Soft Robotics 160  
        14.1 Introduction 160  
        14.2 Fibrous Materials: Properties and Architecture 161  
        14.3 Functionalization Made Possible by New Textile Processing Technologies 163  
        14.4 Light-Weight-Structures for Robots 166  
        14.5 Adaptive and Intelligent Structures 170  
        14.6 Soft Robot Surface Design and Surface Functionalization 174  
        14.7 Conclusion 175  
     15 Opportunities and Challenges for the Design of Inherently Safe Robots 176  
        15.1 Introduction 176  
        15.2 State of the Art in Soft Robotics 177  
        15.3 Design of Soft Robots with Variable Stiffness 178  
        15.4 Concepts 182  
        15.5 Summary and Outlook 184  
        15.6 References 184  
     16 Aspects of Human Engineering – Bio-optimized Design of Wearable Machines 187  
        16.1 Introduction 187  
           16.1.1 The Challenge 187  
           16.1.2 Prevalence 188  
        16.2 Designing a Wearable Robot: State of the Art 189  
           16.2.1 Different Types of Exoskeletons 189  
           16.2.2 Power and Drives 190  
           16.2.3 Detection of User Intention 191  
           16.2.4 Human Anatomy 193  
        16.3 Therapy and Rehabilitation 197  
        16.4 Physical Prevention and Force Assistance 197  
        16.5 Vision: Auxiliary Assistance 198  
        16.6 References 199  
     17 3D Printed Objects and Components Enabling Next Generation of True Soft Robotics 201  
        17.1 Introduction 201  
           17.1.1 Additive Manufacturing (AM) as a Manufacturing Technology forSoft-Robotic-Systems 202  
           17.1.2 The Production Processes 202  
           17.1.3 The Term Robot and its Newly Added Additive Components 203  
           17.1.4 Integrated Functional Components 203  
           17.1.5 Soft Actuator Systems 205  
           17.1.6 Fabrication of Soft Objects Including Endless Fibers 208  
        17.2 Discussion and Outlook 210  
        17.3 References 211  
  Part V Soft Robotic Applications 212  
     18 Soft Hands for Reliable Grasping Strategies 213  
        18.1 Introduction 213  
        18.2 Exploiting Constraints 214  
        18.3 Requirements to Hardware 216  
        18.4 PneuFlex Actuators 217  
        18.5 Anthropomorphic Soft Hand Prototype 218  
        18.6 Example Implementation of a Grasping Strategy 219  
        18.7 Used Interactions 220  
        18.8 Limitations 222  
        18.9 Discussion 222  
        18.10 References 223  
     19 Task-specific Design of Tubular Continuum Robots for Surgical Applications 224  
        19.1 Introduction 224  
        19.2 Continuum Robots with Tubular Structure 225  
           19.2.1 Kinematic Structure 225  
           19.2.2 Kinematic Modelling 225  
           19.2.3 Component Tube Parameters 226  
        19.3 Task-specific Design 226  
           19.3.1 Design Heuristics 227  
        19.4 Computational Design Optimization 228  
        19.5 Discussion and Outlook 230  
        19.6 References 231  
     20 Soft Robotics with Variable Stiffness Actuators: Tough Robots for Soft Human Robot Interaction 233  
        20.1 Introduction 233  
        20.2 Compliant Actuation 234  
           20.2.1 Floating Spring Joint (FSJ) 235  
           20.2.2 Flexible Antagonistic Spring Element (FAS) 236  
           20.2.3 Bidirectional Antagonism with Variable Stiffness (BAVS) 237  
        20.3 Electronics and System Architecture 238  
        20.4 Hand Design and Control 239  
        20.5 Modeling Soft Robots 241  
        20.6 Cartesian Stiffness Control 242  
           20.6.1 Cartesian Impedance Control 242  
           20.6.2 Independent Position and Stiffness Control 244  
        20.7 Optimal Control 246  
        20.8 Collision Detection and Reaction 247  
           20.8.1 Reactions 247  
           20.8.2 Reflexes 249  
        20.9 Cyclic Motion Control 250  
        20.10 Conclusion 252  
        20.11 References 252  
     21 Soft Robotics Research, Challenges, and Innovation Potential, Through Showcases 257  
        21.1 Introduction: The Need for Soft Robots 257  
        21.2 The Challenges for Soft Robotics, Through the Octopus Showcase 258  
           21.2.1 Biological Insights 258  
           21.2.2 Soft Actuation Technologies 260  
           21.2.3 Soft Robot Modeling and Control 260  
           21.2.4 Integration and Validation of an Octopus-like Robot 261  
        21.3 Soft Robots at Work 261  
           21.3.1 Biomedical Applications of Soft Robotics: Octopus-derived Technologies in Surgery 261  
           21.3.2 Soft Robots in Explorations: An Octopus-like Underwater Robot 262  
           21.3.3 Soft Grippers for Manufacturing 263  
        21.4 Conclusions 263  
        21.5 References 264  
     22 Flexible Robot for Laser Phonomicrosurgery 267  
        22.1 Introduction 267  
        22.2 Phonomicrosurgery 267  
        22.3 System Design 270  
           22.3.1 Design Specifications and Constraints 270  
           22.3.2 Flexible Sections, Actuation Unit, and Control 270  
        22.4 Results 271  
        22.5 Conclusions 272  
        22.6 References 272  
     23 Soft Components for Soft Robots 274  
        23.1 Introduction: What Kind of Softness? 274  
        23.2 Actuators for Soft Robots 275  
           23.2.1 Actuators for Multi-DoF Designs 275  
           23.2.2 Pneumatic Artificial Muscles (PAMs) 275  
           23.2.3 Smart Material-Based Actuators 276  
        23.3 Soft Sensors 277  
           23.3.1 Soft Geometry for “Hard” Conductor 277  
           23.3.2 Conductive Material 278  
           23.3.3 Discrete Sensors in Soft Matrix for Distributed Sensing 278  
        23.4 Conclusions 280  
        23.5 References 281  
     24 Soft Robotics for Bio-mimicry of Esophageal Swallowing 284  
        24.1 Introduction 284  
        24.2 Interdisciplinary Specifications 285  
        24.3 Actuator Design and Manufacture 286  
        24.4 Experimental Characterization 288  
           24.4.1 Manometry Method and Findings 289  
           24.4.2 Articulography Method and Findings 290  
        24.5 Discussion and Conclusion 292  
        24.6 References 292  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz