Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Orifice Plates and Venturi Tubes
  Großes Bild
 
Orifice Plates and Venturi Tubes
von: Michael Reader-Harris
Springer-Verlag, 2015
ISBN: 9783319168807
406 Seiten, Download: 16339 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 6  
  Contents 8  
  Notations 15  
  1 Introduction and History 19  
     Abstract 19  
     1.1 Introduction 19  
     1.2 Theory 20  
        1.2.1 Bernoulli's Theorem 20  
        1.2.2 Method of Operation 21  
           1.2.2.1 General 21  
           1.2.2.2 Incompressible Flow 21  
           1.2.2.3 Compressible Flow 22  
           1.2.2.4 Equation for Practical Use 24  
     1.3 Essential Requirements 25  
        1.3.1 General 25  
        1.3.2 With a Calibration in a Flowing Fluid 25  
        1.3.3 Without a Calibration in a Flowing Fluid 26  
     1.4 Introduction to Reynolds Number and Velocity Profile 26  
     1.5 Pipe Roughness 29  
     1.6 Accuracy 30  
     1.7 Pressure Loss 31  
     1.8 Standards 32  
     1.9 Advantages and Disadvantages 32  
     1.10 History 33  
     1.11 Conclusions 40  
     Appendix 1.A: Sextus Julius Frontinus 41  
     References 46  
  2 Orifice Design 50  
     Abstract 50  
     2.1 Introduction 50  
     2.2 Orifice Plate 51  
        2.2.1 General 51  
        2.2.2 Flatness 53  
        2.2.3 Surface Condition of the Upstream Face of the Plate 54  
        2.2.4 Edge Sharpness 56  
        2.2.5 Plate Thickness E and Orifice (Bore) Thickness e 58  
           2.2.5.1 General 58  
           2.2.5.2 Plate Thickness E 58  
           2.2.5.3 Orifice (Bore) Thickness e 59  
           2.2.5.4 Requirements 61  
        2.2.6 Circularity 62  
     2.3 The Pipe 62  
        2.3.1 General 62  
        2.3.2 Pressure Tappings 63  
           2.3.2.1 General 63  
           2.3.2.2 Flange and D and D/2 Tappings 63  
              General 63  
              Tapping Diameter 65  
              Tapping Location 65  
           2.3.2.3 Corner Tappings 67  
           2.3.2.4 Number of Tappings 67  
        2.3.3 Pipe Roughness 68  
           2.3.3.1 Uniform Roughness 68  
           2.3.3.2 Rough Pipes with a Smooth Portion Immediately Upstream of the Orifice 71  
           2.3.3.3 Non-uniform Roughness 72  
        2.3.4 Steps and Misalignment 74  
        2.3.5 Eccentricity 76  
     2.4 Dimensional Measurements 77  
     2.5 Orifice Fittings 78  
     2.6 Pressure Loss 79  
     2.7 Reversed Orifice Plates 82  
     2.8 Conclusions 84  
     Appendix 2.A: Orifice Plates of Small Orifice Diameter 85  
        2.A.1 Introduction and Test Work 85  
        2.A.2 Conclusions 89  
     References 90  
  3 Venturi Tube Design 94  
     Abstract 94  
     3.1 Introduction 94  
     3.2 Type 96  
        3.2.1 General 96  
        3.2.2 Machined Convergent (5.2.9, 5.5.3 and 5.7.2 of ISO 5167-4:2003) 97  
        3.2.3 Rough-Welded Sheet-Iron Convergent (5.2.10, 5.5.4 and 5.7.3 of ISO 5167-4:2003) 97  
        3.2.4 `As Cast' Convergent (5.2.8, 5.5.2 and 5.7.1 of ISO 5167-4:2003) 97  
        3.2.5 Wider Range of Reynolds Number 98  
     3.3 Angles, Pressure Loss and Truncation 98  
     3.4 Dimensional Measurements 100  
     3.5 Steps and Straightness 101  
     3.6 Pressure Tappings 102  
     3.7 Effects of Roughness and Reynolds Number 104  
     3.8 High or Low Reynolds Number 104  
     3.9 Conclusions 107  
     Appendix 3.A:‚Effect of Roughness: Computational Fluid Dynamics 107  
        3.A.1 General 107  
        3.A.2 Venturi Tube Roughness 107  
           3.A.2.1 Effect of Venturi Tube Roughness Height 107  
           3.A.2.2 Effect of Reynolds Number 108  
           3.A.2.3 Effect of Venturi Tube Roughness Type 108  
        3.A.3 Pipe Roughness 109  
        3.A.4 Effect of Rounding the Corner Between the Convergent Section and the Throat 110  
     References 112  
  4 General Design 114  
     Abstract 114  
     4.1 Introduction 114  
     4.2 Impulse Lines 114  
        4.2.1 General 114  
        4.2.2 Tapping Locations and Slopes of Impulse Lines 116  
        4.2.3 Density of the Fluids in Two Impulse Lines to Measure the Differential Pressure 118  
        4.2.4 Length of Impulse Lines 121  
        4.2.5 Blockage 122  
        4.2.6 Damping of the Pressure Signal or Resonance 123  
     4.3 Differential Pressure 123  
        4.3.1 Differential-Pressure Transmitters 123  
        4.3.2 Piezometer Rings 126  
     4.4 Static Pressure 127  
     4.5 Drain and Vent Holes (Through the Pipe Wall) 128  
     4.6 Temperature 128  
        4.6.1 General 128  
        4.6.2 Temperature Correction from Downstream of the Flowmeter to Upstream of It 129  
        4.6.3 Using a Densitometer 132  
        4.6.4 Correction of Dimensions for Temperature 133  
     4.7 Iteration 134  
     4.8 Uncertainty 134  
     4.9 Cavitation 135  
     4.10 Diagnostics 135  
     4.11 Mixtures 136  
     4.12 Conclusions 137  
     Appendix 4.A: Impulse Lines in Pulsating Flows 137  
     Appendix 4.B:‚Measuring Low Differential Pressure at High Static Pressure 140  
        4.B.1‚Introduction 140  
        4.B.2‚The Problem 140  
        4.B.3‚A Possible Solution 140  
     References 141  
  5 Orifice Discharge Coefficient 143  
     Abstract 143  
     5.1 Introduction 143  
     5.2 History 144  
     5.3 The EEC/API Database 147  
     5.4 The Equation 150  
        5.4.1 Introduction 150  
        5.4.2 The Tapping Terms 150  
           5.4.2.1 Introduction 150  
           5.4.2.2 High Reynolds Number Tapping Terms 152  
              Total Tapping Terms 152  
              Upstream Term 152  
              Downstream Term 154  
           5.4.2.3 Low Reynolds Number Tapping Terms 156  
        5.4.3 The C221E and Slope Terms 160  
        5.4.4 A Term for Small Orifice Meters 162  
        5.4.5 The Complete Equation 163  
     5.5 Quality of Fit 164  
     5.6 Equations and Comparison Between Them on the Basis of Deviations 171  
        5.6.1 The Reader-Harris/Gallagher (RG) Equation as in API 14.3.1:1990 171  
        5.6.2 The Stolz Equation in ISO 5167:1980 172  
        5.6.3 Comparisons 172  
     5.7 Uncertainty 175  
     5.8 Conclusions 179  
     Appendix 5.A: Better Options for Tapping Terms 179  
     Appendix 5.B: Small Orifice Diameters Within the EEC/API Database 183  
     Appendix 5.C: The PR14 Equation and an Equation in Terms of Friction Factor 186  
        5.C.1 The PR14 Equation 186  
        5.C.2 An Equation in Terms of Friction Factor 187  
     Appendix 5.D: The Effect on the Discharge-Coefficient Equation of Changing the Expansibility-Factor Equation 188  
     Appendix 5.E: Orifice Plates in Pipes of Small Diameter or with No Upstream or with No Downstream Pipeline or with No Upstream and No Downstream Pipeline 191  
        5.E.1 Introduction 191  
        5.E.2 Orifice Plates in Pipes of Small Diameter 191  
        5.E.3 Orifice Plates with No Upstream or Downstream Pipeline 192  
        5.E.4 Orifice Plates with No Upstream Pipeline 194  
        5.E.5 Orifice Plates with No Downstream Pipeline 195  
     Appendix 5.F: Lower Reynolds Number Limit for the Reader-Harris/Gallagher (1998) Equation 197  
     References 199  
  6 Orifice Expansibility Factor 203  
     Abstract 203  
     6.1 Introduction 203  
     6.2 History and Theory 204  
     6.3 The Database 205  
     6.4 Analysis 206  
     6.5 Theoretical Model 211  
     6.6 Subsequent Work 214  
     6.7 Conclusions 215  
     Appendix 6.A: Data Taken with a Flow Conditioner 7D or 10D from the Orifice Plate 215  
     References 216  
  7 Venturi Tube Discharge Coefficient in High-Pressure Gas 218  
     Abstract 218  
     7.1 Introduction 218  
     7.2 Experimental Work: Standard Shape 219  
        7.2.1 Description of the Venturi Tubes 219  
        7.2.2 Calibration in Water 220  
        7.2.3 Calibration in Gas 221  
     7.3 Interpretation and Analysis of Data 224  
        7.3.1 Static-Hole Error 224  
        7.3.2 Measurements of Static-Hole Error at High Tapping-Hole Reynolds Number 225  
        7.3.3 Measurements of Static-Hole Error at Low Tapping-Hole Reynolds Number 226  
        7.3.4 The Effect of Tapping Depth on Static-Hole Error 227  
        7.3.5 The Effect of Tapping Shape on Static-Hole Error 229  
        7.3.6 The Effect of a Burr or a Protruding Tapping on Static-Hole Error 229  
        7.3.7 Analysis of the Gas Data in Sect. 7.2.3 229  
        7.3.8 Conclusions to Sect. 7.3 230  
     7.4 Improved Shape 232  
        7.4.1 General 232  
        7.4.2 Venturi Tube with Convergent Angle 10.5? 232  
        7.4.3 The Discharge-Coefficient Equation for Venturi Tubes with Convergent Angle 10.5? 234  
     7.5 Conclusions 236  
     Appendix 7.A: Shape of Venturi Tubes: Tests at NEL 236  
        7.A.1 Design 236  
        7.A.2 Calibration in Water 239  
        7.A.3 Calibration in Gas 239  
        7.A.4 Analysis 239  
        7.A.5 Conclusions on Shape from the 42033 Venturi Tubes 247  
        7.A.6 Manufacture of Additional Venturi Tubes with 10.5? Convergent Angle and Sharp Corners 247  
        7.A.7 Calibration of Additional Venturi Tubes in Water and in Gas 248  
     Appendix 7.B: Depth of Tappings: Tests at NEL 252  
     Appendix 7.C: Refitting the Data With Convergent Angle 10.5? 254  
     References 257  
  8 Installation Effects 259  
     Abstract 259  
     8.1 Introduction 259  
     8.2 Upstream Straight Lengths 260  
        8.2.1 General 260  
        8.2.2 Definitions 262  
        8.2.3 Orifice Plates 262  
           8.2.3.1 History 262  
           8.2.3.2 The Pattern of the Data 262  
           8.2.3.3 The Straight Lengths in ISO 5167-2:2003 267  
        8.2.4 Venturi Tubes 269  
           8.2.4.1 Standard Venturi Tubes 269  
              General 269  
              Calibrations Downstream of a Contraction and an Expansion 270  
              Calibrations Downstream of Bends 270  
              Analysis 273  
           8.2.4.2 Venturi Tubes with Convergent Angle 10.5? 274  
        8.2.5 What to Do if a Case is not Covered in Table 3 of ISO 5167-2:2003/Table 1 of ISO 5167-4:2003 276  
           8.2.5.1 General 276  
           8.2.5.2 The Upstream Installation is a Combination of Fittings 276  
           8.2.5.3 A Flow Conditioner Is Used 277  
              General 277  
              With an Orifice Plate 278  
              With a Venturi Tube 282  
              Damage to Flow Conditioners 284  
           8.2.5.4 A Specific Test Is Done 284  
           8.2.5.5 CFD is Carried Out 285  
           8.2.5.6 Engineering Judgement is Employed 285  
     8.3 Downstream Straight Length 286  
        8.3.1 Orifice Plates 286  
        8.3.2 Venturi Tubes 286  
     8.4 Pulsations 287  
        8.4.1 General 287  
        8.4.2 Orifice Plates 288  
        8.4.3 Venturi Tubes 288  
     8.5 Conclusions 288  
     Appendix 8.A: Swirl Decay 289  
     References 289  
  9 Nozzle Discharge Coefficient 295  
     Abstract 295  
     9.1 Introduction 295  
     9.2 Manufacture 297  
        9.2.1 General 297  
        9.2.2 Pipework and Nozzles 298  
        9.2.3 Nozzle Tappings 298  
        9.2.4 Wall Tappings 300  
     9.3 Data 300  
     9.4 Wall-Tapping Data: Analysis 301  
     9.5 Throat-Tapping Data: Initial Analysis 305  
     9.6 Hot-Water (NMIJ Throat-Tapping) Data 309  
     9.7 Throat-Tapping Data: Further Analysis 310  
        9.7.1 General 310  
        9.7.2 Analysis of NMIJ Data 312  
        9.7.3 Application to NEL Data 313  
        9.7.4 Analysis of NEL Data 315  
     9.8 Conclusions 316  
     References 317  
  10 Orifice Plates with Drain Holes 319  
     Abstract 319  
     10.1 Introduction 319  
     10.2 Experimental Work: Initial Data 322  
     10.3 Experimental Work: Additional Data 327  
     10.4 Analysis 330  
        10.4.1 Bernoulli's Theorem 330  
        10.4.2 Pressure Tapping Location for Flow Measurement Without Error 332  
        10.4.3 An Equation for the Corrected Diameter 334  
        10.4.4 Practical Equations for the Corrected Diameter 338  
     10.5 Conclusions 339  
     References 339  
  11 Wet Gas 341  
     Abstract 341  
     11.1 Introduction 341  
     11.2 Fundamental Equations 343  
        11.2.1 General 343  
        11.2.2 Laboratory Test Work 344  
        11.2.3 Models for Field Use 344  
           11.2.3.1 General 344  
           11.2.3.2 Venturi Tube 345  
              General 345  
              de Leeuw Equation 345  
              ISO/TR 11583:2012 Correlation 345  
           11.2.3.3 Orifice Plate 346  
        11.2.4 Methods to Obtain the Lockhart-Martinelli Parameter, X (Eq. 11.2) 347  
           11.2.4.1 General 347  
           11.2.4.2 Pressure Loss Ratio 348  
              Venturi Tube 348  
              Orifice Plate 349  
     11.3 Venturi Tubes 350  
        11.3.1 Over-Reading Equations 350  
           11.3.1.1 Derivation of the ISO/TR 11583:2012 Correlation 350  
           11.3.1.2 Comparison with the de Leeuw Equation 357  
           11.3.1.3 Possible Improvement of the ISO/TR 11583:2012 Correlation 357  
        11.3.2 Using Pressure-Loss Measurements 361  
        11.3.3 Mixtures of Liquids 365  
     11.4 Orifice Plates 367  
        11.4.1 General 367  
        11.4.2 Derivation of the Equations in ISO/TR 11583:2012 367  
        11.4.3 Subsequent Work 371  
     11.5 Conclusions 371  
     Appendix 11.A: A Brief History of ISO/TR 11583 372  
     Appendix 11.B: Dependence of the Wet-Gas Correlations for Venturi Tubes on Liquid Viscosity 375  
        11.B.1 General 375  
        11.B.2 Deviations from the ISO/TR 11583:2012 Correlation 375  
        11.B.3 Deviations from the de Leeuw Equation 378  
        11.B.4 Errors Using ISO/TR 11583:2012 with X Determined from the Pressure Loss Ratio 380  
        11.B.5 Analysis 380  
        11.B.6 Horizontal Tappings 388  
     References 388  
  12 Standards 390  
     Abstract 390  
     12.1 Introduction 390  
     12.2 ISO Standards 391  
     12.3 ISO/TC 30 Measurement of Fluid Flow in Closed Conduits 392  
        12.3.1 General 392  
        12.3.2 ISO/TC 30/SC 2 Pressure Differential Methods 392  
           12.3.2.1 General 392  
           12.3.2.2 Differential-Pressure Flow Measurement Standards: ISO 5167 Etc. 393  
           12.3.2.3 ISO/TR 9464 Guidelines for Using ISO 5167 395  
           12.3.2.4 ISO/TR 12767 Differential-Pressure Meters Departing from ISO 5167 395  
           12.3.2.5 ISO/TR 15377 Differential-Pressure Meters Beyond the Scope of ISO 5167 396  
           12.3.2.6 ISO/TR 3313 Pulsating Flow 396  
           12.3.2.7 ISO/TR 11583 Wet Gas 397  
           12.3.2.8 ISO 2186 Impulse Lines 397  
           12.3.2.9 Priorities for the Future as Seen in 2014 397  
        12.3.3 The TC Itself 398  
           12.3.3.1 General 398  
           12.3.3.2 Priorities for the Future as Seen in 2014 399  
     12.4 AGA/API Standards 399  
     12.5 Conclusions 400  
     Appendix 12.A: The Standards of ISO/TC 30/SC 2 400  
     References 401  
  Index 402  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz