Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Eddy Current Approximation of Maxwell Equations - Theory, Algorithms and Applications  
Eddy Current Approximation of Maxwell Equations - Theory, Algorithms and Applications
von: Ana Alonso Rodriguez, Alberto Valli
Springer-Verlag, 2010
ISBN: 9788847015067
355 Seiten, Download: 3646 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Title Page 4  
  Copyright Page 5  
  Preface 6  
  Table of Contents 12  
  1 Setting the problem 15  
     1.1 Maxwell equations and time-harmonic Maxwell equations 15  
     1.2 Eddy currents and eddy current approximation 18  
     1.3 Geometrical setting and boundary conditions 22  
     1.4 Harmonic fields in electromagnetism 24  
     1.5 The complete eddy current model 29  
  2 A mathematical justification of the eddy current model 34  
     2.1 The E-based formulation of Maxwell equations 34  
     2.2 The eddy current model as the low electric permittivity limit 38  
     2.3 The eddy current model as the low-frequency limit 40  
        2.3.1 Higher order convergence 43  
  3 Existence and uniqueness of the solution 48  
     3.1 Weak formulation, existence and uniqueness for the magnetic field 49  
     3.2 Determination of the electric field 51  
     3.3 Strong formulation for the magnetic field 56  
        3.3.1 The Faraday equation for the “cutting” surfaces 59  
        3.3.2 Suitability of other formulations 61  
     3.4 Existence and uniqueness for the complete eddy current model 64  
     3.5 Other boundary conditions 65  
  4 Hybrid formulations for the electric and magnetic fields 71  
     4.1 Hybrid formulation using the magnetic field in the insulator 72  
     4.2 A saddle-point approach for the EC /HI formulation 74  
        4.2.1 Finite element discretization 79  
     4.3 A saddle-point approach for the H-based formulation 88  
     4.4 Hybrid formulation using the electric field in the insulator 90  
     4.5 A saddle-point approach for the HC /EI formulation 95  
        4.5.1 Finite element discretization 99  
        4.5.2 Some remarks on implementation 104  
        4.5.3 Numerical results 109  
     4.6 A saddle-point approach for the E-based formulation 116  
  5 Formulations via scalar potentials 123  
     5.1 The weak formulation in terms of HC and ?I 124  
     5.2 The strong formulation in terms of HC and ?I 129  
        5.2.1 A domain decomposition procedure 131  
     5.3 The formulation in terms of EC and ??I 132  
        5.3.1 A domain decomposition procedure 136  
     5.4 Numerical approximation 137  
        5.4.1 The determination of a vector potential for the density current Je,I 138  
        5.4.2 Finite element approximation 140  
     5.5 The finite element approximation of EI 152  
  6 Formulations via vector potentials 158  
     6.1 Formulation for the Coulomb gauge and its numerical approximation 159  
        6.1.1 The weak formulation 165  
        6.1.2 Existence and uniqueness of the solution to the weak formulation 172  
        6.1.3 Numerical approximation 176  
        6.1.4 Numerical results 181  
        6.1.5 A penalized formulation for the electric field 188  
     6.2 Formulation for the Lorenz gauge and its numerical approximation 191  
        6.2.1 Decoupled weak formulations and alternative gauge conditions 194  
        6.2.2 Well-posed formulations based on the Lorenz gauge 199  
        6.2.3 Weak formulations and positiveness 202  
        6.2.4 Numerical approximation 205  
     6.3 Other potential formulations 206  
  7 Coupled FEM–BEM approaches 216  
     7.1 The (AC, VC ) ? ?I formulation 218  
     7.2 The (AC, VC ) ? ?? weak formulation 220  
     7.3 Existence and uniqueness of the weak solution 224  
     7.4 Stability as ? goes to 0 227  
     7.5 Numerical approximation 229  
        7.5.1 The non-convex case 232  
     7.6 Other FEM–BEM approaches 232  
        7.6.1 The code TRIFOU 232  
        7.6.2 An approach based on the magnetic field HC 235  
        7.6.3 An approach based on the electric field EC 241  
  8 Voltage and current intensity excitation 246  
     8.1 The eddy current problem in the presence of electric ports 247  
        8.1.1 Hybrid formulations in term of EC and ??I 249  
        8.1.2 Formulations in terms of HC and ??I 259  
        8.1.3 Formulations in terms of TC and ??I 261  
        8.1.4 Finite element approximation 265  
        8.1.5 Numerical results 269  
     8.2 Voltage and current intensity excitation for an internal conductor 274  
        8.2.1 Variational formulations 278  
  9 Selected applications 286  
     9.1 Metallurgical thermoelectrical problems 286  
        9.1.1 Induction furnaces 287  
        9.1.2 Metallurgical electrodes 290  
     9.2 Bioelectromagnetism: EEG and MEG 297  
     9.3 Magnetic levitation 304  
     9.4 Power transformers 309  
     9.5 Defect detection 314  
  Appendix 319  
     A.1 Functional spaces and notation 319  
     A.2 Nodal and edge finite elements 323  
        A.2.1 Grad-conforming finite elements 324  
        A.2.2 Curl-conforming finite elements 327  
     A.3 Orthogonal decomposition results 331  
        A.3.1 First decomposition result 331  
        A.3.2 Second decomposition result 334  
        A.3.3 Third decomposition result 336  
     A.4 More on harmonic fields 337  
  References 340  
  Index 353  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz