Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Fundamentals of Hydrogen Embrittlement  
Fundamentals of Hydrogen Embrittlement
von: Michihiko Nagumo
Springer-Verlag, 2016
ISBN: 9789811001611
241 Seiten, Download: 10675 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 6  
  Contents 8  
  Chapter 1: Solid Solution 11  
     1.1 Solubility 11  
     1.2 Lattice Location 15  
     1.3 Partial Molar Volume and Strain Field 16  
     1.4 Atomistic Calculations of the Heat of Solution 17  
     References 19  
  Chapter 2: Hydrogen Trapping and Its Detection 20  
     2.1 Manifestations and Analyses of Hydrogen Trapping 20  
        2.1.1 Solid Solubility at Low Temperatures 20  
        2.1.2 Hydrogen Thermal Desorption Analysis 24  
     2.2 Partition of Hydrogen Among Different Traps 35  
        2.2.1 Equilibrium Distribution 35  
        2.2.2 Kinetics of Hydrogen Trapping 37  
     2.3 Visualization of Hydrogen Distribution 38  
     References 41  
  Chapter 3: Interactions of Hydrogen with Lattice Defects 43  
     3.1 Dislocations 43  
        3.1.1 Experimental Results 43  
        3.1.2 Theoretical Estimation of Hydrogen-Dislocation Interactions 48  
     3.2 Vacancies 51  
        3.2.1 Density 51  
        3.2.2 Vacancy Clusters and Migration 53  
        3.2.3 Interaction of Hydrogen with Vacancies 56  
     3.3 Precipitates 64  
     3.4 Grain Boundaries 67  
     3.5 Voids and Surfaces 68  
     References 69  
  Chapter 4: Diffusion and Transport of Hydrogen 72  
     4.1 Determination of Diffusion Coefficient 72  
     4.2 Diffusion Process 75  
     4.3 Hydrogen Transport by Dislocations 79  
        4.3.1 Release of Internal Hydrogen 80  
        4.3.2 Electrochemical Permeation 81  
     References 83  
  Chapter 5: Deformation Behaviors 85  
     5.1 Elastic Moduli 85  
     5.2 Flow Stress 86  
     5.3 Stress Relaxation and Creep 93  
        5.3.1 Stress Relaxation 93  
        5.3.2 Creep 96  
        5.3.3 Implications of Surface Effects 98  
     5.4 Direct Observation of Dislocation Activity 100  
     5.5 Elastic and Atomistic Calculations 101  
        5.5.1 Elastic Shielding of Stress Centers 101  
        5.5.2 Mobility of Screw Dislocations - Atomistic Calculations 104  
     References 106  
  Chapter 6: Manifestations of Hydrogen Embrittlement 108  
     6.1 Tensile Tests 108  
     6.2 Fracture Mechanics Tests 113  
        6.2.1 Crack Initiation 114  
        6.2.2 Crack Growth 119  
     6.3 Fatigue 122  
     6.4 Delayed Fracture 129  
        6.4.1 Factors Affecting Delayed Fracture 129  
        6.4.2 Incubation Period 131  
        6.4.3 Effects of Environmental Variations 135  
     References 138  
  Chapter 7: Characteristic Features of Deformation and Fracture in Hydrogen Embrittlement 141  
     7.1 Fractographic Features 141  
     7.2 Strain Localization and Plastic Instability 155  
        7.2.1 Strain Localization 155  
        7.2.2 Plastic Instability 160  
     7.3 Precursory Damage to Crack Initiation 161  
        7.3.1 Generation of Damage During Mechanical Tests 161  
        7.3.2 Effects of Stress History 165  
     References 168  
  Chapter 8: Effects of Microstructural Factors on Hydrogen Embrittlement 170  
     8.1 Dislocation and Slip Configurations 171  
     8.2 Impurities and Alloying Elements 181  
     8.3 Heterogeneous Phases 184  
     8.4 Phase Stability and Deformation Microstructures of Austenitic Stainless Steels 188  
        8.4.1 Hydrides and Phase Changes 188  
        8.4.2 Compositional Effects on Hydrogen Embrittlement 191  
        8.4.3 Fractographic Features 195  
        8.4.4 Deformation Microstructures 196  
     References 198  
  Chapter 9: Mechanistic Aspects of Fracture I ~ Brittle Fracture Models 200  
     9.1 Internal Pressure Theory 201  
     9.2 Surface Adsorption Theory 204  
     9.3 Lattice Decohesion Theory 205  
        9.3.1 Cohesive Strength 205  
        9.3.2 Local Stress Intensity Approach 206  
     9.4 Theories of Intergranular Fracture 208  
        9.4.1 Interface Decohesion 208  
        9.4.2 Formation of Incipient Crack - Meaning of Surface Energy in Fracture Criteria 212  
     9.5 Summary of Brittle Fracture Models 216  
     References 217  
  Chapter 10: Mechanistic Aspects of Fracture II~Plasticity-Dominated Fracture Models 219  
     10.1 Outline of Elemental Concepts of Ductile Fracture 219  
        10.1.1 Void Nucleation 219  
        10.1.2 Void Growth and Coalescence 220  
        10.1.3 Plastic Instability 223  
     10.2 Hydrogen-Enhanced Localized Plasticity Theory 227  
     10.3 Adsorption-Induced Dislocation Emission Theory 230  
     10.4 Autocatalytic Void-Formation and Shear-Localization Theory 231  
     10.5 Hydrogen-Enhanced Strain-Induced Vacancy Theory 232  
        10.5.1 Brief Summary of Findings 233  
        10.5.2 Crack Growth Resistance and its Microscopic Origin 235  
        10.5.3 Simulation of R-Curve and Strain Localization Near the Crack-Tip 237  
     10.6 Summary of Ductile Fracture Models 238  
     References 240  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz