Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Phasor Measurement Units and Wide Area Monitoring Systems
  Großes Bild
 
Phasor Measurement Units and Wide Area Monitoring Systems
von: Antonello Monti, Carlo Muscas, Ferdinanda Ponci
Elsevier Reference Monographs, 2016
ISBN: 9780128031551
300 Seiten, Download: 12122 KB
 
Format: EPUB, PDF
geeignet für: geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Apple iPod touch, iPhone und Android Smartphones Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Front Cover 1  
  Phasor Measurement Units and Wide Area Monitoring Systems: From the Sensors to the System 4  
  Copyright 5  
  Contents 6  
  Contributors 10  
  Acknowledgment 12  
  Chapter 1: Introduction 14  
     1.1. Motivation for the Work 14  
     1.2. What is a PMU? 15  
     1.3. A Short History of the PMU 17  
     1.4. Structure of the Book 18  
     References 21  
  Chapter 2: Basic Concepts and Definitions: Synchrophasors, Frequency, and ROCOF 22  
     2.1. Basic Definitions of Synchrophasor, Frequency, and ROCOF 22  
     2.2. Steady-State and Dynamic Conditions in Power Systems 25  
     2.3. Importance of the Model: Classical Phasor Versus Dynamic Phasor 28  
     2.4. Basic Definitions of Accuracy Indexes 31  
     References 32  
  Chapter 3: Algorithms for Synchrophasors, Frequency, and ROCOF 34  
     3.1. Methods to Calculate Synchrophasors Based on a Steady-State Model 36  
        3.1.1. Methods Based on DFT 37  
        3.1.2. Methods Based on Direct Model Matching 42  
        3.1.3. Methods Based on Demodulation and Filtering 43  
     3.2. Methods Based on a Dynamic Signal Model 46  
        3.2.1. Methods Based on Discrete Fourier Transform 48  
        3.2.2. Methods Based on Time Domain Model Matching 50  
        3.2.3. Other Estimation Methods 55  
     3.3. Evaluation of Frequency and ROCOF 56  
     3.4. Dynamic Behavior of Phasor Measurement Algorithms 58  
     References 62  
  Chapter 4: Sensors for PMUs 66  
     4.1. International Standards for Instrument Transformers 66  
     4.2. Accuracy of Instrument Transformers 67  
     4.3. Instrument Transformers Technologies 68  
        4.3.1. Voltage Dividers 68  
           4.3.1.1. Resistive Dividers 70  
           4.3.1.2. Capacitive Dividers 70  
        4.3.2. Rogowski Coils 72  
     4.4. Transducer Impact on PMU Accuracy 74  
  Chapter 5: Hardware for PMU and PMU Integration 76  
     5.1. Introduction 76  
     5.2. PMU Architecture 78  
     5.3. Data Acquisition System 81  
     5.4. Synchronization Sources 85  
     5.5. Communication and Data Collector 92  
     5.6. Distributed PMU 97  
     References 98  
  Chapter 6: International Standards for PMU and Tests for Compliance 100  
     6.1. The Synchrophasor Standard 100  
        6.1.1. IEEE 1344-1995 100  
        6.1.2. IEEE 37.118(2005) 103  
        6.1.3. IEEE C37.118.1(2011) and IEEE C37.118.2(2011) 105  
        6.1.4. IEC IEEE 60255-118-1 106  
     6.2. Synchrophasors and IEC 61850 107  
        6.2.1. Introduction to IEC 61850 Standard 107  
        6.2.2. Standard Communication Services and Bus Architecture 109  
        6.2.3. Comparison of IEC 61850 Communication Services and C37.118 111  
        6.2.4. IEC TR 61850-90-5 Guidelines for Reporting Synchrophasors 112  
           6.2.4.1. IEC 61850 Object Model for WAMPAC Applications Using Synchrophasors 113  
              Model of System Hierarchy 113  
              Model of PMU 114  
              Model of PDCs—Substation PDC (SPDC) Model 115  
              Model of PDCs—Regional or System-Level PDC Model 115  
           6.2.4.2. Modes of Synchrophasor Communication 116  
           6.2.4.3. Security Model 117  
           6.2.4.4. Synchrophasor Profile Mapping 117  
           6.2.4.5. Mapping of C37.118 Frames to IEC 61850 Services 120  
           6.2.4.6. Data Model Extensions Prescribed by IEC TR 61850-90-5 121  
     6.3. Test for Compliance: Examples 121  
        6.3.1. Examples of PMU Testing Results 122  
        6.3.2. Conclusion and Commentary on Future PMU Future Standards and Interoperability 131  
     References 132  
  Chapter 7: State Estimation and PMUs 136  
     7.1. Introduction 137  
     7.2. Formulation of the SE Problem 140  
     7.3. SE Measurement Model 140  
        7.3.1. Weighted Least Squares Method 141  
        7.3.2. Equality-Constrained WLS 143  
        7.3.3. Augmented Matrix WLS 144  
        7.3.4. Least Absolute Value (LAV) Method 145  
        7.3.5. Other Methods 146  
           7.3.5.1. Fuzzy Logic Based SE Algorithms 146  
           7.3.5.2. Probabilistic SE Methods 146  
           7.3.5.3. Artificial Neural Network Based SE 146  
        7.3.6. SE Requirements 146  
           7.3.6.1. Accuracy of the Estimation 147  
           7.3.6.2. Time Frame 149  
           7.3.6.3. Robustness 150  
     7.4. SE Classification 150  
        7.4.1. Transmission vs. Distribution Systems 151  
        7.4.2. Choice of the State Vector 152  
        7.4.3. Single-Phase vs. Three-Phase Model 152  
        7.4.4. Centralized vs. Decentralized Architecture 153  
        7.4.5. Static vs. Dynamic Estimators 154  
     7.5. Role and Impact of PMU in SE 155  
        7.5.1. Availability of Phasor Measurements 156  
        7.5.2. Synchronization With Respect to the UTC 157  
        7.5.3. High Reporting Rate 158  
        7.5.4. Compliance With the Measurement of Dynamic Signals 158  
        7.5.5. High Accuracy 158  
     7.6. PMU Based Transmission System SE 159  
     7.7. PMU Based Distribution System SE 163  
     7.8. Optimal PMU Placement 170  
     7.9. SE Applications 175  
        7.9.1. Security Assessment 175  
        7.9.2. Automation 176  
        7.9.3. Provision of Data for Forecasters or Pseudo-Measurements 177  
        7.9.4. Power Quality Assessment 177  
     7.10. Automation Architecture With Integrated PMU Measurements for SE 177  
        7.10.1. Transmission/Distribution 185  
        7.10.2. Centralized/Decentralized 187  
        7.10.3. Static/Dynamic 187  
        7.10.4. Single Phase/Three Phase 187  
     References 187  
  Chapter 8: Wide Area Measurement Systems: Applications 190  
     8.1. Introduction 191  
     8.2. Voltage-Stability Assessment Based on the Thevenin Approach and Synchrophasor Measurements 191  
        8.2.1. Brief Introduction to the Thevenin Approach 191  
        8.2.2. Introduction for the Test Case and Setup 192  
        8.2.3. Discussion on the Test Results 193  
           8.2.3.1. Voltage Collapse Without Consideration of Measurement Uncertainty 195  
           8.2.3.2. Impact of the Measurement Uncertainty in Magnitude and in Phase-Angle Respectively on the Voltage-Stability Asse ... 196  
           8.2.3.3. Conclusion Obtained From This Application and Its Test Results 199  
     8.3. Voltage-Stability Assessment Based on the Modal Analysis and Synchrophasor Measurements 199  
        8.3.1. Global Voltage-Stability Detection by Means of Modal Analysis 200  
           8.3.1.1. Determination of the Maximal Power Generation Ability Pmax 200  
           8.3.1.2. Determination of the Current Power Generation P0 201  
           8.3.1.3. Simulation Modeling and Establishment of Test Platform 202  
           8.3.1.4. Modeling of Uncertainty in Synchrophasor Measurements 202  
        8.3.2. Test Results and Discussion 204  
           8.3.2.1. Preparation for the Tests 204  
           8.3.2.2. Tests for the Impact of Synchrophasor Uncertainty on the Voltage-Stability Determination 205  
           8.3.2.3. Tests for the Impact of Synchrophasor Uncertainty on the Calculation of LMI 206  
           8.3.2.4. Conclusions Based on This Application 207  
     8.4. Adaptive Load Shedding Taking Advantage of the Synchrophasor Measurements 208  
        8.4.1. Short Introduction About the Combined UFLS and UVLS 208  
        8.4.2. Test Setups and Discussions on the Test Results 209  
           8.4.2.1. Overall Configuration of Experimentation Platform 209  
           8.4.2.2. Model of Power System 210  
           8.4.2.3. Modeling for Communication Network 212  
           8.4.2.4. Test Results of Load Shedding in an Ideal Communication Condition 212  
           8.4.2.5. Test Results of Load Shedding in a Nonideal Communication Condition 214  
        8.4.3. Conclusions on Load Shedding 217  
     8.5. Estimation of Grid Parameters 218  
        8.5.1. Introduction 218  
        8.5.2. Estimation Framework 219  
        8.5.3. Single-Circuit Transmission Line Parameter Estimation 219  
           8.5.3.1. Optimal Parameter Estimation 223  
        8.5.4. Grid Impedance Estimation 224  
     8.6. Software Platform for Real-Time Monitoring Applications 226  
        8.6.1. Structure of the Software Platform 227  
        8.6.2. Measurement Interfacing Layer for Synchrophasors—OpenPDC 229  
           8.6.2.1. Introduction to OpenPDC 229  
           8.6.2.2. OpenPDC Architecture 230  
           8.6.2.3. OpenPDC Configuration for Real-Time Monitoring Systems 232  
        8.6.3. Measurement Storage Layer 233  
        8.6.4. Application Layer 235  
     8.7. Implementation of a Real-time Monitoring Platform 236  
        8.7.1. Real-Time Monitoring Platform 236  
        8.7.2. Real-Time Power System Simulation 237  
           8.7.2.1. Emulation of Transducers 237  
           8.7.2.2. Synchrophasor Measurement Systems 237  
           8.7.2.3. Software Platform for Monitoring Application 238  
     8.8. Monitoring Application—Distributed System State Estimation 238  
        8.8.1. Simulation Scenario 241  
        8.8.2. Simulation Results 242  
     References 245  
  Chapter 9: Real Life Examples of Wide Area Measurement Systems 248  
     9.1. Introduction 248  
     9.2. Structure of WAMS Integrated in Control and Management Systems 250  
     9.3. Managing Oscillations in Power Systems 253  
        9.3.1. Extracting Oscillatory Stability Parameters from Measurements 255  
        9.3.2. Identifying Sources of Oscillation 258  
        9.3.3. Example of Operational Constraints Based on Oscillations in Australia 260  
        9.3.4. PSS Tuning 262  
        9.3.5. Wide Area Damping Control 271  
     9.4. Managing Disturbances 272  
        9.4.1. Monitoring and Situational Awareness 272  
        9.4.2. Postevent Analysis 276  
     9.5. Constraint Relief in Transmission and Distribution Systems 276  
        9.5.1. Use of Angles in Stability Constraint Definitions 277  
        9.5.2. Controlling with Wide Area Signals 281  
     9.6. Wide Area Control for System Defense 281  
        9.6.1. Event- and Response-Driven Control 281  
        9.6.2. Frequency and Angle Stability Control 282  
     9.7. Conclusions 286  
     References 288  
  Author Index 290  
  Subject Index 294  
  Back Cover 300  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz