Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
High-Performance and Specialty Fibers - Concepts, Technology and Modern Applications of Man-Made Fibers for the Future
  Großes Bild
 
High-Performance and Specialty Fibers - Concepts, Technology and Modern Applications of Man-Made Fibers for the Future
von: Society of Fiber Science & Technology, Japan
Springer-Verlag, 2016
ISBN: 9784431552031
441 Seiten, Download: 19108 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 6  
  List of the Editorial Staff 10  
  Contents 12  
  Part I: Advancement of Fiber Science and Technology 15  
     Chapter 1: History of Fiber Structure 16  
        1.1 Introduction 16  
        1.2 From Micelle Model to Fringed-Micelle Model for Natural Fibers 17  
           1.2.1 Micelle Model 17  
           1.2.2 Fringed-Micelle Model for Macromolecules 20  
           1.2.3 Conclusion 22  
        1.3 From Fringed-Micelle Microfibril Model to Shish-Kebab Model for Synthetic Fibers 23  
           1.3.1 Fringed-Micelle Microfibril Model (Hess-Kiessig Model) 24  
           1.3.2 Paracrystalline Layer Lattice-Microfibril Model (Hosemann-Bonart Model) 26  
           1.3.3 Folded Chain Microfibril Model (Peterlin Model) 28  
           1.3.4 Shish-Kebab Structure Model (Pennings-Keller Model) 28  
        1.4 Conclusion 30  
        References 31  
     Chapter 2: Progress in Structure Analysis Techniques of Fibers 33  
        2.1 Introduction 33  
        2.2 Development of Structure Analysis of Fibers 35  
           2.2.1 Wide-Angle X-ray Scattering Technique for Crystal Structure Analysis 35  
           2.2.2 Neutron Scattering Method 37  
           2.2.3 Electron Diffraction Technique 38  
        2.3 Case Studies of Crystal Structural Analysis of Fibers 39  
           2.3.1 Synthetic Fibers 39  
              2.3.1.1 Polyethylene 39  
              2.3.1.2 Polyoxymethylene 41  
           2.3.2 Natural Fibers 42  
              2.3.2.1 Cellulose 42  
              2.3.2.2 Silk Fiber 44  
        2.4 Vibrational Spectroscopic Technique 49  
           2.4.1 Historical Development 49  
           2.4.2 Progression Bands 52  
           2.4.3 Longitudinal Acoustic Mode Bands 54  
        2.5 Solid-State NMR Spectroscopy 55  
        2.6 AFM and STM 55  
        2.7 Thermal Analysis 56  
        2.8 Computer Simulations 56  
        2.9 Conclusions 57  
        References 57  
     Chapter 3: Progress in Fiber Spinning Technology 60  
        3.1 Introduction 60  
        3.2 Definition of Fiber Spinning Technology 61  
        3.3 Theoretical Analysis of Fiber Spinning Dynamics 63  
           3.3.1 Melt Spinning of Noncircular Cross-Section Fibers 63  
           3.3.2 Non-steady-state Spinning 64  
           3.3.3 Development of Higher-Order Structure 65  
           3.3.4 Effect of Molecular Entanglement 66  
        3.4 Development of Technology for Online Measurement of Spinning Process 66  
        3.5 Distinctive Fiber Spinning Technologies 71  
        3.6 Concluding Remark 74  
        References 75  
     Chapter 4: History of Polyester Resin Development for Synthetic Fibers and Its Forefront 77  
        4.1 Introduction[7] 77  
        4.2 Methods of Synthesis [6] [8] [9] 78  
           4.2.1 DMT Method and Direct Polymerization Method 78  
           4.2.2 Polycondensation Reaction 79  
           4.2.3 Molecular Weight 80  
           4.2.4 Polymerization System 80  
           4.2.5 Polycondensation Catalysts 81  
        4.3 Copolymerization Polyester 81  
           4.3.1 Copolymerization Components and Manufacture Method 81  
           4.3.2 Dyeability 84  
           4.3.3 Hydrolyzability 84  
           4.3.4 Flame Retardant Property 85  
           4.3.5 Mixed Filaments of Different Shrinkage 85  
        4.4 Bio-based PET 85  
           4.4.1 Background 85  
           4.4.2 Bio-based Ethylene Glycol 86  
           4.4.3 Bio-based Terephthalic Acid 87  
           4.4.4 Biomass Content of PET 87  
        4.5 Polyesters Other Than PET (3GT, PBT, and PEN) 88  
           4.5.1 Major Aromatic Polyesters Other Than PET 88  
           4.5.2 3GT Fiber [21] 88  
           4.5.3 PBT Fiber 89  
           4.5.4 PEN Fiber [22] 89  
        4.6 Concluding Remark 89  
        References 90  
  Part II: High-Strength High-Modulus Organic Fibers 91  
     Chapter 5: History of Super Fibers: Adventures in Quest of the Strongest Fiber 92  
        5.1 Introduction 92  
        5.2 Rigid Polymers 94  
           5.2.1 Aramid Fibers 94  
           5.2.2 Polyarylate Fiber 96  
           5.2.3 Heterocyclic Polymer 97  
        5.3 Semirigid Polymers 98  
        5.4 Flexible Polymers 98  
        5.5 Concluding Remarks 100  
        References 101  
     Chapter 6: Microscopically Viewed Relationship Between Structure and Mechanical Property of Crystalline Polymers: An Important... 103  
        6.1 Introduction 104  
        6.2 Experimental Evaluation of Ultimate Elastic Constants of Polymers 105  
           6.2.1 X-Ray Diffraction Method 105  
           6.2.2 Vibrational Spectroscopic Method 106  
        6.3 Theoretical Evaluation of Ultimate Elastic Constants of Polymers 107  
        6.4 Relationship Between Chain Conformation and Young´s Modulus 108  
        6.5 Crystal Structure and Anisotropic Mechanical Property 109  
        6.6 Strength of Polymer Chains 111  
        References 115  
     Chapter 7: Dyneema: Super Fiber Produced by the Gel Spinning of a Flexible Polymer 117  
        7.1 Introduction 117  
        7.2 Essence of the Gel-Spinning Technology 119  
           7.2.1 Important Points for Increasing the Tenacity of Polyethylene Fibers 119  
           7.2.2 Evolution of the Fundamental Concepts of the Gel-Spinning and Industrial Efforts on Its Commercialization 121  
              7.2.2.1 Controlled State of Entanglements Using Ultrahigh Molecular Weight Polymers and Semi-dilute Solution Systems 123  
              7.2.2.2 Spinning Process as a Process for Controlling the Crystalline Morphology Leading to High Drawability 124  
              7.2.2.3 Drawing Process 125  
        7.3 Structure Evolution in Spinning and Drawing Processes 126  
           7.3.1 Discovery of Shish-Kebab Structure in Dilute UHMWPE Solutions 126  
           7.3.2 Structural Development of Shish-Kebab Structure in Entangled Semi-dilute Solutions 127  
           7.3.3 Structural Changes in the Drawing Process: Transformation of Shish-Kebab into Microfibrous Structure 131  
        7.4 Fiber Properties and Applications 133  
        7.5 Future Perspectives 135  
           7.5.1 Recent Trends for Polymer Development 135  
           7.5.2 New Spinning and Drawing Technologies 136  
        7.6 Conclusions 137  
        References 138  
     Chapter 8: Development of High-Strength Poly(ethylene terephthalate) Fibers: An Attempt from Semiflexible Chain Polymer 141  
        8.1 Introduction 141  
        8.2 Background of Research 143  
        8.3 Strategy for Development of High-Strength PET Fibers 144  
        8.4 Various Technologies Applied for the Modification of Spinning Process 146  
           8.4.1 Modification of Spinning Process Through Addition of Modifier 146  
           8.4.2 Utilization of Pressurized Medium 147  
           8.4.3 Heating of Spin-Line Immediately Below the Spinneret Irradiating Carbon Dioxide Laser 147  
           8.4.4 Modification of Spin-Line Introducing the Concept of Direct Spin-Drawing 148  
        8.5 Concept for Strengthening of PET Fibers 149  
        8.6 Estimation for the Change in the State of Molecular Entanglement 152  
        8.7 Concluding Remark 154  
        References 155  
     Chapter 9: Technora Fiber: Super Fiber from the Isotropic Solution of Rigid-Rod Polymer 156  
        9.1 Introduction 156  
        9.2 Polymer Research 157  
        9.3 Technora Polymer 157  
        9.4 Polymer Preparation 158  
        9.5 Spinning Solutions 160  
        9.6 Fiber Spinning 161  
        9.7 Fiber Drawing 163  
        9.8 Manufacturing Process of PPTA and Technora 165  
        9.9 Technora Aramid Products 167  
        9.10 Structure and Morphology 168  
        9.11 Chemical Resistance 169  
        9.12 Fibrillar Structure and Fatigue Resistance 173  
        9.13 Polymer Sequence Distribution Analysis 174  
        9.14 Conclusion 176  
        References 176  
     Chapter 10: Vectran: Super Fiber from the Thermotropic Crystals of Rigid-Rod Polymer 177  
        10.1 General Introduction 177  
        10.2 Characterization of Vectran 178  
           10.2.1 Fiber Chemistry 178  
           10.2.2 Molecular Structure 179  
           10.2.3 Mechanical Properties 180  
           10.2.4 Thermal Properties 180  
           10.2.5 Creep Property 181  
           10.2.6 Vibration Damping 183  
           10.2.7 Cut Resistance 184  
        10.3 Crystal Structure of Vectran 185  
           10.3.1 Introduction 185  
           10.3.2 Crystal Structural Change on Annealing Process 185  
        10.4 Composite Application of Vectran 188  
           10.4.1 Introduction 188  
           10.4.2 Textile Fibers for Flexible Composite 189  
           10.4.3 Flex/Fold Fatigue Resistance of Vectran 191  
           10.4.4 Dimensional Stability of Vectran 193  
           10.4.5 Environmental Stability of Vectran 194  
        10.5 Conclusion 195  
        References 195  
     Chapter 11: Zylon: Super Fiber from Lyotropic Liquid Crystal of the Most Rigid Polymer 197  
        11.1 History 197  
        11.2 PBO Chemistry 200  
           11.2.1 PBZ Chemistry 200  
           11.2.2 PBO Chemistry 201  
              11.2.2.1 Monomer Chemistry 201  
              11.2.2.2 Polymerization 201  
           11.2.3 Alternative Chemistry for PBO 202  
        11.3 Features of Zylon 202  
           11.3.1 Mechanical Properties 203  
           11.3.2 Compressive Strength 205  
           11.3.3 Fatigue 207  
           11.3.4 Flame Resistance 208  
           11.3.5 Thermal Conductivity 208  
           11.3.6 Degradation Under Hydrolytic Condition 210  
           11.3.7 Photoaging 211  
        11.4 Fiber Processing 212  
           11.4.1 Spinning Dope 213  
           11.4.2 Fiber Processing 215  
              11.4.2.1 Spin-Drawing 215  
              11.4.2.2 Coagulation 216  
              11.4.2.3 Washing and Neutralization 216  
              11.4.2.4 Drying 218  
        11.5 Applications 218  
           11.5.1 Heat-Resistant Materials 218  
           11.5.2 Fiber-Reinforced Composites 218  
           11.5.3 Rope and Cables 219  
        11.6 Conclusions 220  
        References 221  
  Part III: Functional and Speciality Man-Made Fibers 223  
     Chapter 12: Overview of Functional and Speciality Fibers 224  
        12.1 Introduction 224  
        12.2 Production Amount of Man-Made Fibers [5] 226  
        12.3 Modification Technologies of Man-Made Fibers [7, 8] 228  
           12.3.1 Technology for Chemical Modification of Polymers 229  
           12.3.2 Fiber Modification Technology 229  
           12.3.3 Post-processing Modification Technology 231  
        12.4 Biomimetic Man-Made Fibers Having Specific Structures and Functions [7, 8] 234  
        12.5 Conclusion 236  
        References 236  
     Chapter 13: High-Touch Fibers and ``Shin-gosen´´ (Newly Innovated Fabrics) 237  
        13.1 Technology of High Value-Added Synthetic Fibers 237  
        13.2 Development of Silky Polyester 238  
           13.2.1 The First Stage: Imitate the Shape of Silk Fiber 239  
           13.2.2 The Second Stage: Imitate the Features of Silk Fabrics 240  
           13.2.3 The Third Stage: Imitating the View of Nature and the Inhomogeneousness of Silk Fabrics 241  
           13.2.4 From the Natural-Fiber-Like Materials to the Synthetic Fiber Original Materials 241  
        13.3 Development of Ultrafine Fibers and Their Evolution 242  
           13.3.1 Manufacturing Process of Ultrafine Fibers 242  
           13.3.2 Further Evolution of the Ultrafine Fibers 243  
        13.4 The Birth of ``Shin-gosen´´ 244  
           13.4.1 What Is ``Shin-gosen´´? 244  
              13.4.1.1 New Silky Materials 245  
              13.4.1.2 Slightly Nap-Raised (Peach Face) Materials 245  
              13.4.1.3 Dry-Touch Materials 245  
              13.4.1.4 New Worsted Materials 247  
           13.4.2 Higher-Order Processing Technology Which Supported Shin-gosen 248  
        References 249  
     Chapter 14: Moisture and Water Control Man-Made Fibers 250  
        14.1 Why Moisture and/or Water Absorption Is Important for Fibers 251  
        14.2 Moisture and Water Absorption of Fibers 252  
        14.3 Moisture Absorption Fibers and Moisture Absorption Modification Methods 255  
           14.3.1 Cross-Linked Acrylate Fiber MOISCARER (Toyobo) 256  
           14.3.2 High Moisture-Absorbing Nylon Fiber QUUPR (Toray) 256  
           14.3.3 Sheath-Core Structural Nylon Fiber Demonstrating Moisture Absorption and Release HYGRAR (Unitika) 257  
           14.3.4 Sheath-Core Structure Conjugated Fiber SOFISTAR (Kuraray) 257  
        14.4 Water Absorption Fibers and Water Absorption Modification Methods 259  
        14.5 Composite Structures of Yarns and Knitted or Woven Fabrics 262  
        References 263  
     Chapter 15: Heat-Controllable Man-Made Fibers 264  
        15.1 Methods for Imparting Heat-Retaining Ability 264  
        15.2 Units of Heat Retention 265  
        15.3 Heat-Retaining Materials 265  
           15.3.1 Thermal Conduction 265  
           15.3.2 Radiation 266  
           15.3.3 Thermal Storage of Solar Energy 267  
           15.3.4 Response to Temperature Change 269  
           15.3.5 Hygroscopic Exotherm 269  
           15.3.6 Phase Change 271  
        References 271  
  Part IV: Ultrafine and Nano Fibers 273  
     Chapter 16: Nanofibers 274  
        16.1 Introduction [1, 2] 274  
        16.2 Nanospinnings [1, 2] 276  
           16.2.1 Electrospinning 277  
           16.2.2 Novel Electrospinning [3, 4] 277  
           16.2.3 Melt Air Spinning [3, 4] 280  
        16.3 Potential Applications [1] 281  
        16.4 Conclusions 283  
        References 284  
     Chapter 17: Nanofibers by Conjugated Spinning 285  
        17.1 Introduction 285  
        17.2 Spinning Method for Microfiber 286  
           17.2.1 Spinning Method of Filament Type 286  
           17.2.2 Spinning Method of Web Type 287  
        17.3 Nanofiber Technology by Conjugated Spinning 288  
           17.3.1 Nanofiber Technology Using Conjugated Spinning by Blend Spinning 288  
           17.3.2 Nanofiber Technology Using Conjugated Spinning by Spinneret Technology 290  
        17.4 Conclusion 295  
     Chapter 18: Cellulose Nanofibers as New Bio-Based Nanomaterials 296  
        18.1 Historical Background 296  
        18.2 TEMPO-Mediated Oxidation of Cellulose 298  
        18.3 Characteristics of TEMPO-Oxidized Wood Celluloses 301  
        18.4 Preparation of TEMPO-Oxidized Cellulose Nanofibers (TOCNs) 304  
        18.5 Characterization of TEMPO-Oxidized Cellulose Nanofibers 305  
        18.6 Properties of TOCN-Containing Composite Materials 306  
        18.7 Conclusions 308  
        References 309  
     Chapter 19: Forefront of Nanofibers: High Strength Fibers and Optoelectronic Applications 311  
        19.1 Introduction 311  
        19.2 High Strength Fibers 312  
        19.3 Carbon Nanofiber Networks for Electronic Applications 315  
        19.4 Non-carbon Nanofiber Networks for Optoelectronic Applications 316  
        19.5 Summary and Perspective 319  
        References 319  
  Part V: Carbon Fibers 322  
     Chapter 20: Carbon Fiber 323  
        20.1 Introduction 323  
        20.2 Properties and Production Methods of Carbon Fiber 324  
           20.2.1 General Properties of Carbon Fiber 324  
           20.2.2 Production Methods for Carbon Fiber 324  
              20.2.2.1 PAN-Based Carbon Fiber 324  
              20.2.2.2 Pitch-Based Carbon Fiber 326  
           20.2.3 Commercialization of Carbon Fiber 327  
              20.2.3.1 Commercialization of PAN-Based Carbon Fiber 327  
              20.2.3.2 Commercialization of Pitch-Based Carbon Fiber 327  
        20.3 Improvement of the Performance of Carbon Fiber 328  
           20.3.1 Basic Structure of Carbon Fiber 328  
           20.3.2 Improvement of the Performance of PAN-Based Carbon Fiber 329  
        20.4 Production of CFRP from Carbon Fiber 330  
           20.4.1 Importance of Matrix Resin in CFRP 330  
           20.4.2 Production of Carbon Fiber Temporary Materials 330  
        20.5 The Application of Carbon Fibers 332  
           20.5.1 Sports and Leisure 332  
           20.5.2 Aircraft 332  
              20.5.2.1 History of CFRP Application 332  
              20.5.2.2 Production Method of Aircraft Elements 332  
              20.5.2.3 Development of High-Impact Resistance Composite Materials 333  
              20.5.2.4 Novel CFRP Molding Process 334  
           20.5.3 Automobile 336  
           20.5.4 Electronic Devices 336  
           20.5.5 Others 336  
        20.6 Carbon Fiber Composite Material and Global Environment 336  
           20.6.1 Life Cycle Assessment 336  
           20.6.2 Recycling 337  
        20.7 Summary 338  
        References 338  
     Chapter 21: Pitch-Based Carbon Fibers 339  
        21.1 Introduction 339  
        21.2 Classification of the Pitch-Based Carbon Fibers [5] 340  
        21.3 Production Method of the Pitch-Based Carbon Fibers 341  
           21.3.1 Pitch Treatment Process 341  
           21.3.2 Spinning Process 342  
           21.3.3 Infusibilization Process 344  
           21.3.4 Carbonization, Graphitization, and Surface Treatment Processes 345  
        21.4 The Structure and Properties of Pitch-Based Carbon Fibers 345  
           21.4.1 Characteristics and New Application Developments of Low-Modulus Carbon Fibers 347  
           21.4.2 High Tensile Modulus and High Thermal Conductivity Carbon Fibers 348  
        21.5 Closing Remarks 349  
        References 350  
     Chapter 22: Life Cycle Assessment of Carbon Fiber-Reinforced Plastic 351  
        22.1 Introduction 351  
        22.2 Life Cycle Inventory and Mechanical Properties of Carbon Fiber 352  
        22.3 Fuel Saving Through Weight Reduction 353  
           22.3.1 LCA for Carbon Fiber-Reinforced Plastic (CFRP) Plane 355  
           22.3.2 LCA for Carbon Fiber-Reinforced Plastic (CFRP) Automotive 356  
        References 357  
     Chapter 23: Recycling Technologies of Carbon Fiber Composite Materials 358  
        23.1 Introduction 358  
        23.2 Classification of Carbon Fiber Recycling Methods 359  
        23.3 Comparison of CFRP Recycling Technologies 359  
        23.4 JCMA Recycling Activities 361  
        23.5 JCMA Recycled Carbon Fiber Pilot Plant 363  
        23.6 Effect of Carbon Fiber Recycling on Environmental Impact 364  
        23.7 Properties of Recycled Milled Carbon Fiber 364  
        23.8 Future Tasks 365  
        23.9 Conclusions 366  
        References 366  
  Part VI: Nonwovens 367  
     Chapter 24: Current Status and Future Outlook for Nonwovens in Japan 368  
        24.1 Definition of Nonwovens 368  
        24.2 Manufacturing Method of Nonwovens 369  
           24.2.1 Web-Forming Method 369  
              24.2.1.1 Wet-Laying Process 370  
              24.2.1.2 Air-Laying Process 370  
              24.2.1.3 Dry-Laying Process 371  
              24.2.1.4 Spunbonding Method 372  
              24.2.1.5 Melt-Blowing Method 372  
              24.2.1.6 Flash Spinning Method 373  
              24.2.1.7 Tow Opening Method 374  
              24.2.1.8 Film-Drawing Method 374  
              24.2.1.9 Electro-spinning Method 374  
           24.2.2 Web-Bonding Method 375  
              24.2.2.1 Chemical (Binder) Bonding 375  
              24.2.2.2 Thermal Bonding 376  
              24.2.2.3 Needle Punching 376  
              24.2.2.4 Hydroentangling (Spunlace Bonding) 377  
              24.2.2.5 Stitch Bonding 378  
        24.3 Applications of Nonwovens 378  
           24.3.1 Protective Wear 379  
           24.3.2 Medical Care 379  
              24.3.2.1 Medical Site 379  
              24.3.2.2 Nonmedical Sites 380  
           24.3.3 Architecture 380  
           24.3.4 Civil Engineering 381  
           24.3.5 Vehicle 381  
           24.3.6 Hygiene 382  
           24.3.7 Wipes 382  
           24.3.8 Filter 382  
           24.3.9 Agriculture and Horticulture 384  
           24.3.10 Artificial Leather 384  
           24.3.11 Others 385  
     Chapter 25: Bicomponent Polyester Fibers for Nonwovens 387  
        25.1 Introduction 387  
        25.2 History of Bicomponent Fibers 388  
        25.3 Sheath-Core Bicomponent Polyester Staple Fibers, MELTY, and CASVEN 389  
           25.3.1 MELTY 390  
           25.3.2 CASVEN 391  
              25.3.2.1 Molecular Designing 391  
              25.3.2.2 Properties and Potential Applications 393  
        25.4 Side-by-Side Bicomponent Polyester Staple Fibers, ``38F,´´ ``H38F,´´and ``C-81´´ 395  
           25.4.1 Structural Crimp Fiber: ``H38F´´ 395  
           25.4.2 Latent Crimp Fiber: ``C-81´´ 396  
        25.5 Sheath-Core Bicomponent Polyester Spunbonded Fabrics: ELEVES 397  
        25.6 Polylactic Acid Fibers for Nonwovens 397  
           25.6.1 Introduction 397  
           25.6.2 Bicomponent PLA Fibers 398  
           25.6.3 Biodegradable/Compostable Characteristic Features of PLA Fibers 398  
        References 400  
     Chapter 26: The World´s Only Cellulosic Continuous Filament Nonwoven ``Bemliese´´ 401  
        26.1 Introduction 401  
        26.2 Cuprammonium Solution 403  
        26.3 Wet Spunbond Process 407  
        26.4 New Development of Cellulosic Spunbond ``Bemliese´´ 410  
        26.5 Key Techniques of Microfilament 410  
        26.6 Priority of Microfilament Bemliese 411  
        References 412  
     Chapter 27: Thermoplastic Polyurethane Nonwoven Fabric ``Espansione´´ 413  
        27.1 Introduction 413  
        27.2 ``Espansione´´ 414  
           27.2.1 Manufacturing Process of ``Espansione´´ 414  
           27.2.2 Technological Features of ``Espansione´´ 414  
        27.3 ``Espansione FF´´ 417  
           27.3.1 Technological Features of ``Espansione FF´´ 417  
           27.3.2 Adhesion Properties of ``Espansione FF´´ 418  
           27.3.3 Air Permeability of ``Espansione FF´´ 420  
           27.3.4 Other Properties of ``Espansione FF´´ 421  
           27.3.5 Various Applications of ``Espansione FF´´ 422  
        27.4 Conclusion 423  
        References 423  
  Part VII: Fibers in Future 424  
     Chapter 28: Future Man-Made Fiber 425  
        28.1 Introduction 425  
        28.2 General Future Forecast 425  
           28.2.1 Social Structural Change: From Consumption to Sustainable Society 426  
           28.2.2 Explosive Increase in Global Population 426  
           28.2.3 Aging Society 426  
           28.2.4 Limited Global Capacity for Food and Natural Resources 426  
           28.2.5 Serious Shortage of Water Supply 426  
           28.2.6 Multi Polarized Society: Economic Bloc and Resource Nationalism 427  
           28.2.7 Government Conversion: Localization and Autonomic Dispersion Style 427  
        28.3 Forecast of Future Fiber Trend 427  
           28.3.1 Coping with Increased Demands 427  
           28.3.2 Decreasing the Costs of Fiber Production 428  
           28.3.3 Development of Recycling Technology 428  
           28.3.4 Expansion of Man-Made Fiber Areas 429  
           28.3.5 Development of Biomass Fiber 429  
        28.4 Future Super-Functional Fiber 429  
           28.4.1 Biomimicked Fiber 430  
           28.4.2 Design-Driven Cellulose Fiber Products 431  
           28.4.3 Spider Silk Fiber 432  
           28.4.4 Intelligent Fiber: Semi Conductor in Fiber with Light-emitting Diode (LED) 433  
           28.4.5 Sustainability of Future Fiber: Bio-base Fibers 435  
           28.4.6 Challenges for Fiber Producers in a Sustainable Future 438  
           28.4.7 The Outlook for Textile Fibers 439  
        References 441  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz