Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Power GaN Devices - Materials, Applications and Reliability
  Großes Bild
 
Power GaN Devices - Materials, Applications and Reliability
von: Matteo Meneghini, Gaudenzio Meneghesso, Enrico Zanoni
Springer-Verlag, 2016
ISBN: 9783319431994
383 Seiten, Download: 25885 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 6  
  Contents 9  
  1 Properties and Advantages of Gallium Nitride 11  
     1.1 General Background 11  
     1.2 GaN Material 12  
     1.3 Polarization Effect 16  
     1.4 GaN-Based FET 19  
     1.5 Natural Super Junction (NSJ) Structure 21  
     1.6 On-Resistance and Breakdown Voltage 24  
     1.7 Low-Voltage Devices 25  
     1.8 High-Voltage Devices 29  
     1.9 Future Study in GaN Vertical Power Device 33  
     References 35  
  2 Substrates and Materials 37  
     2.1 Substrate Overview 38  
     2.2 Metal-Organic Chemical Vapor Deposition 40  
        2.2.1 Fabrication of Semi-insulating (S.I.) (Al,Ga)N Layers 42  
        2.2.2 n- and p-Type Doping 43  
        2.2.3 AlGaN/GaN Heterostructures 44  
     2.3 Traps and Dispersion 45  
     2.4 Fabrication of Epitaxial Structures for Lateral Power Switching Devices 45  
        2.4.1 Current-Blocking Layer Deposition on Silicon Substrates 47  
        2.4.2 Current-Blocking Layer Deposition on Silicon Carbide Substrates 48  
        2.4.3 Current Blocking Layer Deposition on Sapphire Substrates 48  
        2.4.4 Gating Layer Growth 50  
     2.5 Vertical Devices 50  
     2.6 Outlook 55  
        2.6.1 InAlN and AlInGaN Barrier Layers 55  
        2.6.2 Devices Based on Non-c-plane GaN 56  
     References 57  
  3 GaN-on-Silicon CMOS-Compatible Process 63  
     3.1 GaN-on-Si Epitaxy 63  
     3.2 GaN-on-Si Au-Free Processing 65  
     3.3 Au-Free Ohmic Contact 69  
        3.3.1 AlGaN Barrier Recess 71  
        3.3.2 Ohmic Alloy Optimization 71  
        3.3.3 Ti/Al Ratio 72  
        3.3.4 Si Layer at Bottom of Ohmic Metal Stack 73  
     3.4 Gallium Contamination Issues 74  
     3.5 Conclusion 77  
     References 77  
  4 Lateral GaN Devices for Power Applications (from kHz to GHz) 79  
     4.1 Introduction 79  
     4.2 History of AlGaN/GaN HEMTs 79  
     4.3 Addressing Dispersion 81  
     4.4 Gallium Nitride for mm-Wave Applications 84  
     4.5 Historical Perspective of N-Polar GaN Development 86  
     4.6 GaN Applied to Power Electronics 95  
     4.7 Conclusions 102  
     Acknowledgments 103  
     References 103  
  5 Vertical Gallium Nitride Technology 110  
     5.1 Introduction 110  
     5.2 Device Topology 112  
        5.2.1 Vertical Devices Versus Lateral Devices 112  
     5.3 Evolution of a CAVET 114  
     5.4 Design of a CAVET 117  
        5.4.1 A Discussion of the Key Components Required for the Successful Functioning of the Device 117  
     5.5 The Key Components of a CAVET 119  
        5.5.1 Current Blocking Layers 124  
        5.5.2 Performance and Cost 126  
     5.6 Role of Bulk GaN Substrate 127  
     5.7 CAVETs for RF Application 128  
     5.8 Conclusion 128  
     Acknowledgments 129  
     References 129  
  6 GaN-Based Nanowire Transistors 131  
     6.1 Introduction 131  
        6.1.1 Bottom-Up Nanowire Devices: GaN Nanowire Field-Effect Transistors 133  
        6.1.2 Top-Down Nanowire Devices 135  
           6.1.2.1 Tri-Gate GaN Transistors for Power Electronics Applications 135  
     6.2 Tri-Gate GaN Power MISFET 135  
        6.2.1 Additional Considerations of Tri-gate GaN Power Transistors 139  
     6.3 Nanowires for RF Applications: Increasing Linearity of Gm 142  
     6.4 Nanostructured GaN Schottky Barrier Diodes 145  
        6.4.1 Nanostructured Anode for GaN SBDs 145  
     6.5 Conclusions 148  
     References 150  
  7 Deep-Level Characterization: Electrical and Optical Methods 153  
     7.1 Introduction 153  
     7.2 Fundamentals of DLTS and DLOS 155  
        7.2.1 C-DLTS 155  
        7.2.2 C-DLOS 157  
        7.2.3 Applicability of C-DLTS and C-DLOS to HEMTs 158  
        7.2.4 I-DLTS and I-DLOS 159  
     7.3 Application of DLTS and DLOS to GaN HEMTs 161  
        7.3.1 Using Fill Pulses to Spatially Locate Traps 162  
        7.3.2 Using Measurement Bias to Spatially Locate Traps 166  
        7.3.3 Additional Methods to Measure Spatially Localized Traps 168  
     7.4 Conclusion 169  
     References 170  
  8 Modelling of GaN HEMTs: From Device-Level Simulation to Virtual Prototyping 172  
     8.1 Introduction 172  
     8.2 Device-Level Simulation 174  
        8.2.1 Pulsed Mode Behavior 177  
     8.3 Non-optimized Buffer Technology 177  
     8.4 Optimized Buffer Technology 181  
        8.4.1 AC Capacitances 183  
        8.4.2 Off-state Breakdown 185  
     8.5 Spice Model Development and Calibration 187  
     8.6 Application Board Characterization and Simulations 189  
        8.6.1 Normally-off pGaN Transistors 192  
        8.6.2 Normally-on HEMT: Cascode Design 195  
     8.7 Conclusions 201  
     References 201  
  9 Performance-Limiting Traps in GaN-Based HEMTs: From Native Defects to Common Impurities 204  
     9.1 Surface-Related Trapping 209  
     9.2 Impact of Iron Doping 212  
        9.2.1 Properties of Deep Level E2 and Impact of Iron Doping 212  
        9.2.2 Origin of the Trap E2 215  
        9.2.3 Impact of Electrical Stress on Trapping Mechanisms 217  
     9.3 Impact of Carbon Doping 219  
     9.4 Trapping Mechanisms in Metal Insulator Semiconductor High-Electron-Mobility Transistors (MIS-HEMTs) 226  
        9.4.1 Origin of the Trapping Induced by Positive Gate Bias 227  
        9.4.2 Analysis of Fast and Slow Trapping Mechanisms 230  
        9.4.3 Materials and Deposition Techniques for the Improvement of Trapping Effects 230  
     References 234  
  10 Cascode Gallium Nitride HEMTs on Silicon: Structure, Performance, Manufacturing, and Reliability 244  
     10.1 Motivation and Configuration of the Cascode GaN HEMT 244  
     10.2 Functionality and Benefits of Cascode GaN HEMT 245  
     10.3 Key Applications and Performance Advantage of Cascode GaN HEMTs 246  
        10.3.1 Diode-Free Half-Bridge Architecture 246  
        10.3.2 Gate-Drive Considerations 247  
     10.4 Products in the Market 249  
     10.5 Applications and Key Performance Benefits 250  
        10.5.1Totem-Pole Power Factor Correction Circuit (PFC) 250  
        10.5.2 PV Inverters 251  
        10.5.3 All-in-One Power Supplies with GaN AC–DC PFC and Full-Bridge Resonant Switching LLC DC–DC Con ... 251  
     10.6 Qualification and Reliability of Cascode GaN HEMTs 253  
        10.6.1 JEDEC Qualification 254  
        10.6.2 Extended Qualification/Reliability Testing 255  
        10.6.3 Operating and Intrinsic Lifetime Testing 256  
     10.7 Manufacturing Excellence 258  
     10.8 On Single-Chip e-Mode GaN 259  
     10.9 Future Outlook 260  
        10.9.1 Next-Generation Products 260  
        10.9.2 Intellectual Property Considerations 260  
        10.9.3 In Summary 260  
     Acknowledgments 261  
     References 261  
  11 Gate Injection Transistors: E-mode Operation and Conductivity Modulation 262  
     11.1Operation Principle of GIT 262  
     11.2DC and Switching Performances ofGIT 263  
     11.3 State-of-the-Art Reliability of GIT 268  
     11.4 Applications ofGIT to Practical Switching Systems 270  
     11.5 Advanced Technologies ofGIT for Future Power Electronics 275  
     11.6 Summary 278  
     Acknowledgments 278  
     References 279  
  12 Fluorine-Implanted Enhancement-Mode Transistors 280  
     12.1 Introduction: Fluorine in III-Nitride Heterostructures: Robust Vth Control 280  
     12.2 Physics Mechanism of Fluorine Implantation 282  
        12.2.1 Atomistic Modeling of F Plasma Ion Implantation 282  
        12.2.2 Stability of F Ions in AlGaN/GaN Heterostructures 284  
        12.2.3 Electron Binding Energy Around F Ions 287  
     12.3 Fluorine-Implanted Enhancement-Mode GaN MIS-HEMTs 288  
        12.3.1 GaN MIS-HEMTs 288  
        12.3.2 GaN MIS-HEMTs with Partially Recessed Fluorine-Implanted Barrier 291  
        12.3.3 GaN Smart Power ICs 293  
     12.4 Conclusions 298  
     Acknowledgments 298  
     References 299  
  13 Drift Effects in GaN High-Voltage Power Transistors 301  
     13.1 Introduction 301  
     13.2 Drift Effects and Their Physical Mechanisms 302  
        13.2.1 Overview 302  
        13.2.2 Basic Physical Understanding 302  
        13.2.3 Dependency on Device Operation Conditions 305  
     13.3 Drift Phenomena in GaN Power Switching Transistors 306  
        13.3.1 Dynamic On-State Resistance (Ron_dyn) 306  
           13.3.1.1 Power Switching from Off-State Bias Point 307  
           13.3.1.2 Trapping Effects During On-State Operation 313  
        13.3.2Threshold Voltage Shift 313  
        13.3.3Kink Effect 314  
     13.4 Technological Countermeasures 316  
        13.4.1 Optimized Epitaxial Buffer Design 317  
        13.4.2 Reduction of Electrical Field in Critical Device Regions 318  
     Acknowledgments 320  
     References 320  
  14 Reliability Aspects of 650-V-Rated GaN Power Devices 324  
     14.1 Introduction 324  
     14.2Reliability of Au-Free Ohmic Contacts 324  
        14.2.1 Introduction to Ohmic Contact Reliability 324  
        14.2.2 Au-Free Ohmic Contacts Processing 325  
        14.2.3 Stressing and Measurement Procedure 326  
        14.2.4Reliability Evaluation of Au-Free Ohmic Contacts 328  
           14.2.4.1 Degradation as a Function of Contact Spacing 328  
           14.2.4.2 Degradation as a Function of Stress Power 328  
           14.2.4.3 Temperature Dependence and Activation Energy 330  
           14.2.4.4 Failure Mechanisms 332  
        14.2.5 Conclusions 334  
     14.3 Intrinsic Reliability of MISHEMT Gate Dielectrics 334  
        14.3.1 Introduction 334  
        14.3.2 Experiments 335  
        14.3.3 Analysis of Leakage Current Under Forward Bias Condition 336  
        14.3.4 Analysis of Leakage Current Under Reverse Bias Condition 339  
        14.3.5 Analysis of Defect States in Bulk SiN 340  
        14.3.6 TDDB Study 340  
        14.3.7 Conclusions 343  
     14.4 Buffer Stack Reliability—Off-State High-Voltage Drain Stress 343  
        14.4.1 Introduction 343  
        14.4.2 Current Conduction Mechanism 344  
        14.4.3 High-Temperature Reverse Bias 344  
        14.4.4 High-Voltage off-State Drain Stress 346  
        14.4.5 Conclusions 347  
     References 348  
  15 Switching Characteristics of Gallium Nitride Transistors: System-Level Issues 350  
     15.1 Switching Characteristics of E-mode and Cascode GaN 351  
        15.1.1 Switching Loss Mechanism 351  
        15.1.2 Packaging Influence 352  
        15.1.3 Comparison Between Hard Switching and Soft Switching 356  
     15.2 Special Issues of Cascode GaN 357  
        15.2.1 Impact of Packaging on Gate Breakdown 357  
        15.2.2 Impact of Capacitor Mismatch 358  
           15.2.2.1 Si Avalanche 358  
           15.2.2.2 Failure to Achieve ZVS 360  
           15.2.2.3 Divergent Oscillation 361  
           15.2.2.4 Solution to Solve Capacitor Mismatch Issue 363  
     15.3 Gate Driver Design for GaN Device 364  
        15.3.1 The di/dt Issue 364  
        15.3.2 The dv/dt Issue 365  
     15.4 System-Level Impact 368  
        15.4.1 3D Integrated Point-of-Load Converter 368  
        15.4.2 Isolated DC/DC Converter 371  
           15.4.2.1 48–12 V DCX 371  
           15.4.2.2 400–12 V DCX 372  
        15.4.3 MHz Totem-Pole PFC Rectifier 374  
        15.4.4High-Density Wall Adapter 377  
     15.5 Summary 378  
     References 379  
  Author index 381  
  Subject index 382  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz