Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Reliability Design of Mechanical Systems - A Guide for Mechanical and Civil Engineers
  Großes Bild
 
Reliability Design of Mechanical Systems - A Guide for Mechanical and Civil Engineers
von: Seongwoo Woo
Springer-Verlag, 2017
ISBN: 9783319508290
317 Seiten, Download: 16594 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 5  
  Contents 8  
  1 Introduction to Reliability Design of Mechanical/Civil System 12  
     Abstract 12  
     1.1 Introduction 12  
  2 Reliability Disasters and Its Assessment Significance 18  
     Abstract 18  
     2.1 Introduction 18  
     2.2 Reliability Disasters 21  
        2.2.1 Versailles Rail Accident in 1842 23  
        2.2.2 Tacoma Narrows Bridge in 1940 24  
        2.2.3 De Havilland DH 106 Comet in 1953 25  
        2.2.4 G Company and M Company Rotary Compressor Recall in 1981 26  
        2.2.5 Firestone and Ford Tire in 2000 28  
        2.2.6 Toshiba Satellite Notebook and Battery Overheating Problem in 2007 29  
        2.2.7 Toyota Motor Recalls in 2009 30  
     2.3 Development of Reliability Methodologies in History 31  
        2.3.1 In the Early of 20s Century—Starting Reliability Studies 31  
        2.3.2 In the World War II—New Electronics Failure in Military 35  
        2.3.3 In the End of World War II and 1950s—Starting the Reliability Engineering 37  
        2.3.4 In the 1960s and Present: Mature of Reliability Methodology—Physics of Failure (PoF) 41  
     References 45  
  3 Modern Definitions in Reliability Engineering 46  
     Abstract 46  
     3.1 Introduction 46  
        3.1.1 Bathtub Curve 47  
     3.2 Fundamentals in Probability Theory 48  
        3.2.1 Probability 49  
           3.2.1.1 Mean 50  
           3.2.1.2 Median 50  
           3.2.1.3 Mode 50  
           3.2.1.4 Standard Deviation 50  
           3.2.1.5 Expected Value 51  
        3.2.2 Probability Distributions 51  
           3.2.2.1 Reliability Function 51  
           3.2.2.2 Cumulative Distribution Function 52  
           3.2.2.3 Probability Density Function (PDF) 52  
           3.2.2.4 Failure Rate 53  
           3.2.2.5 Cumulative Hazard Rate Function 53  
     3.3 Reliability Lifetime Metrics 55  
        3.3.1 Mean Time to Failure (MTTF) 55  
        3.3.2 Mean Time Between Failure (MTBF) 56  
        3.3.3 Mean Time to Repair (MTTR) 57  
        3.3.4 BX% Life 57  
        3.3.5 The Inadequacy of the MTTF (or MTBF) and the Alternative Metric BX Life 58  
     3.4 Statistical Distributions 60  
        3.4.1 Poisson Distributions 60  
        3.4.2 Exponential Distributions 62  
     3.5 Weibull Distributions and Its Applications 63  
        3.5.1 Introduction 63  
        3.5.2 Shape Parameters ? 65  
        3.5.3 Confidence Interval 65  
        3.5.4 A Plotting Method on Weibull Probability Paper 66  
        3.5.5 Probability Plotting for the Weibull Distribution 67  
     Reference 70  
  4 Failure Mechanics, Design, and Reliability Testing 71  
     Abstract 71  
     4.1 Introduction 71  
     4.2 Failure Mechanics and Designs 73  
        4.2.1 Product Design––Intended Functions 74  
        4.2.2 Specified Design Lifetime 76  
        4.2.3 Dimensional Differences Between Quality Defects and Failures 77  
        4.2.4 Classification of Failures 78  
     4.3 Failure Mode and Effect Analysis (FMEA) 80  
        4.3.1 Introduction 80  
        4.3.2 Types of FMEA 82  
        4.3.3 System-Level FMEA 82  
        4.3.4 Design-Level FMEA 83  
        4.3.5 Process-Level FMEA 83  
        4.3.6 Steps for Performing FMEA 84  
           4.3.6.1 Defines System and Its Associated Requirements (Step1) 85  
           4.3.6.2 Describe the System and Its Associated Functional Blocks (Step 2) 85  
           4.3.6.3 Identify Failure Modes and Their Associated Effects (Failure Analysis, Step 3) 86  
           4.3.6.4 Risk Assessment (Step 4) 86  
           4.3.6.5 RPN (Risk Priority Number) 86  
           4.3.6.6 Optimization (Step 5) 88  
     4.4 Fault Tree Analysis (FTA) 89  
        4.4.1 Concept of FTA 89  
        4.4.2 Reliability Evaluation of Standard Configuration 93  
     4.5 Robust Design (or Taguchi Methods) 95  
        4.5.1 A Specific Loss Function 96  
           4.5.1.1 On-Target, Minimum-Variation (for Example, a Mating Part in an Assembly) 96  
           4.5.1.2 Smaller the Better––Variance (for Example, Carbon Dioxide Emissions) 97  
           4.5.1.3 Larger the Better––Performance (for Example, Agricultural Yield) 98  
        4.5.2 Robust Design Process 99  
           4.5.2.1 System Design 99  
        4.5.3 Parameter (Measure) Design 100  
        4.5.4 Tolerance Design 100  
        4.5.5 A Parameter Diagram (P-Diagram) 101  
        4.5.6 Taguchi’s Design of Experiment (DOE) 101  
           4.5.6.1 Orthogonal Arrays 102  
        4.5.7 Inefficiencies of Taguchi’s Designs 103  
     4.6 Reliability Testing 104  
        4.6.1 Introduction 104  
        4.6.2 Maximum Likelihood Estimation 105  
        4.6.3 Time-to-Failure Models 107  
           4.6.3.1 Arrhenius Equation 107  
           4.6.3.2 Inverse Power Law 109  
           4.6.3.3 Eyring Equation 109  
        4.6.4 Reliability Testing 110  
  5 Load Analysis 116  
     Abstract 116  
     5.1 Introduction 116  
     5.2 Modeling of Mechanical System 117  
        5.2.1 Introduction 117  
        5.2.2 D’Alembert’s Modeling for Automobile 118  
     5.3 Bond Graph Modeling 121  
        5.3.1 Introduction 121  
        5.3.2 Basic Elements, Energy Relations, and Causality of Bond Graph 122  
        5.3.3 Case Study: Hydrostatic Transmission (HST) in Seaborne Winch 127  
        5.3.4 Case Study: Failure Analysis and Redesign of a Helix Upper Dispenser 133  
     5.4 Load Spectrum and Rain-Flow Counting 136  
        5.4.1 Introduction 136  
        5.4.2 Rain-Flow Counting 138  
        5.4.3 Goodman Relation 140  
        5.4.4 Palmgren-Miner’s Law for Cumulative Damage 141  
     References 146  
  6 Mechanical System Failures 147  
     Abstract 147  
     6.1 Introduction 147  
     6.2 Mechanism of Slip 150  
     6.3 Facture Failure 152  
     6.4 Fatigue Failure 154  
        6.4.1 Introduction 154  
        6.4.2 Type of Fatigue Loading 155  
        6.4.3 Stress Concentration at Crack Tip 158  
        6.4.4 Crack Propagation and Fracture Toughness 160  
        6.4.5 Crack Growth Rates 161  
        6.4.6 Ductile–Brittle Transition Temperature (DBTT) 163  
        6.4.7 Fatigue Analysis 165  
     6.5 Stress–Strength Analysis 167  
     6.6 Failure Analysis 168  
        6.6.1 Introduction 168  
        6.6.2 Procedure of Failure Analysis 170  
        6.6.3 Case Study: PAS (Photo Angle Sensor) in Automobile 172  
        6.6.4 Fracture Faces of Product Subjected to a Variety of Loads in Fields 175  
     References 177  
  7 Parametric Accelerated Life Testing in Mechanical/Civil System 179  
     Abstract 179  
     7.1 Introduction 179  
     7.2 Reliability Design in Mechanical System 180  
     7.3 Reliability Block Diagram and Its Connection in Product 183  
     7.4 Reliability Allocation of Product 184  
        7.4.1 Introduction 184  
        7.4.2 Reliability Allocation of the Product 185  
        7.4.3 Product Breakdown 186  
           7.4.3.1 Automobile 187  
           7.4.3.2 Airplane 188  
           7.4.3.3 Domestic Appliance 188  
           7.4.3.4 Machine Tools 189  
           7.4.3.5 Agricultural Machinery and Heavy Construction Equipment 190  
     7.5 Failure Mechanics, Design, and Reliability Testing 192  
     7.6 Parametric Accelerated Life Testing 195  
        7.6.1 Acceleration Factor (AF) 196  
        7.6.2 Derivation of General Sample Size Equation 201  
        7.6.3 Derivation of Approximate Sample Size Equation 204  
     7.7 The Reliability Design of Mechanical System and Its Verification 206  
        7.7.1 Introduction 206  
        7.7.2 Reliability Quantitative (RQ) Specifications 208  
        7.7.3 Conceptual Framework of Specifications for Quality Assurance 212  
     7.8 Testing Equipment for Quality and Reliability 214  
        7.8.1 Introduction 214  
        7.8.2 Procedure of Testing Equipment Development (Example: Solenoid Valve Tester) 217  
     References 226  
  8 Parametric ALT and Its Case Studies 228  
     Abstract 228  
     8.1 Failure Analysis and Redesign of Ice Maker 228  
     8.2 Residential Sized Refrigerators During Transportation 236  
     8.3 Water Dispenser Lever in a Refrigerator 240  
     8.4 Refrigerator Compressor Subjected to Repetitive Loads 249  
     8.5 Hinge Kit System (HKS) in a Kimchi Refrigerator 260  
     8.6 Refrigerator Drawer System 270  
     8.7 Compressor Suction Reed Valve 275  
     8.8 Failure Analysis and Redesign of the Evaporator Tubing 286  
     8.9 Compressor with Redesigned Rotor and Stator 295  
     8.10 French Refrigerator Drawer System 303  
  9 Parametric ALT: A Powerful Tool for Future Engineering Development 314  
     Abstract 314  
     Reference 317  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz