Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Trends in Control and Decision-Making for Human-Robot Collaboration Systems
  Großes Bild
 
Trends in Control and Decision-Making for Human-Robot Collaboration Systems
von: Yue Wang, Fumin Zhang
Springer-Verlag, 2017
ISBN: 9783319405339
424 Seiten, Download: 15475 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 6  
  Acknowledgements 7  
  Contents 8  
  1 Introduction 17  
     1.1 Overview 17  
     1.2 Collaboration Between One Human--Robot Pair 20  
     1.3 Collaboration Between Human and Multiple Robots/Swarms 22  
     References 24  
  2 Robust Shared-Control for Rear-Wheel Drive Cars 30  
     2.1 Introduction 30  
     2.2 Problem Formulation, Definitions, and Assumptions 31  
     2.3 Design of the Shared-Control Law with Measurements of Absolute Positions 34  
        2.3.1 Design of the Feedback Controller 34  
        2.3.2 Shared-Control Algorithm 37  
     2.4 Disturbance Rejections 40  
     2.5 Design of the Shared Control Without Measurements of Absolute Positions 43  
        2.5.1 Design of the Feedback Controller 44  
        2.5.2 Shared-Control Algorithm 46  
     2.6 Case Studies 48  
        2.6.1 Case I: Turning Without Absolute Positioning 48  
        2.6.2 Case II: Driving on a Road with Parked Cars 51  
        2.6.3 Case III: Emergency Breaking 51  
     2.7 Conclusions 53  
     References 53  
  3 Baxter-On-Wheels (BOW): An Assistive Mobile Manipulator for Mobility Impaired Individuals 56  
     3.1 Introduction 56  
     3.2 System Description 59  
        3.2.1 Experimental Platform: BOW 59  
        3.2.2 System Kinematics 63  
     3.3 Control Algorithm 64  
        3.3.1 Baseline Shared-Control Algorithm 64  
        3.3.2 Free-Space Mode and Contact Mode 66  
     3.4 Application to the BOW 69  
        3.4.1 User Interface 69  
        3.4.2 Object Pick-Up and Placement Task 70  
        3.4.3 Board Cleaning Task 73  
     3.5 Conclusion 75  
     References 76  
  4 Switchings Between Trajectory Tracking and Force Minimization in Human--Robot Collaboration 79  
     4.1 Introduction 79  
     4.2 Dynamic Models 81  
        4.2.1 Robot Model 82  
        4.2.2 Human Arm Model 82  
        4.2.3 Unified Model 84  
        4.2.4 Trajectory Tracking 85  
     4.3 Control Design 85  
        4.3.1 Control Objective 85  
        4.3.2 Selection of Cost Functions 86  
        4.3.3 Optimal Control 87  
     4.4 Simulations 89  
        4.4.1 Simulation Settings 89  
        4.4.2 Change of Weights 90  
        4.4.3 Adaptation of Desired Trajectory 92  
     4.5 Conclusions 93  
     References 94  
  5 Estimating Human Intention During a Human--Robot Cooperative Task Based on the Internal Force Model 96  
     5.1 Introduction 96  
     5.2 Internal Force Model 99  
        5.2.1 Problem Formulation 99  
        5.2.2 Existing Models 100  
        5.2.3 Proposed Model 101  
        5.2.4 Discussion 104  
     5.3 Method 104  
        5.3.1 Apparatus 105  
        5.3.2 Procedure 105  
     5.4 Results 107  
     5.5 Validation of the Model 110  
     5.6 Statistical Analysis of the Internal Force Features 112  
        5.6.1 Initial Grasp Force Magnitude 113  
        5.6.2 Final Grasp Force Magnitude 114  
        5.6.3 Internal Force Energy 114  
        5.6.4 Difference Between Initial and Final Grasp Forces 115  
        5.6.5 Internal Force Variation 115  
        5.6.6 Negotiation Force 116  
        5.6.7 Negotiation Force Versus Object Velocity 117  
     5.7 Proposed Cooperation Policy 118  
     5.8 Conclusion 120  
     References 121  
  6 A Learning Algorithm to Select Consistent Reactions to Human Movements 123  
     6.1 Introduction 123  
     6.2 Background 125  
        6.2.1 Expert-Based Learning 125  
        6.2.2 Binary Learning Algorithms 126  
     6.3 Analysis 127  
        6.3.1 Performance 128  
        6.3.2 Consistency 128  
        6.3.3 Adaptiveness 130  
        6.3.4 Tie Breaking 131  
     6.4 Expanded Dual Expert Algorithm 132  
        6.4.1 Performance Analysis 133  
        6.4.2 Consistency and Adaptiveness 134  
     6.5 Simulation 134  
        6.5.1 Dual Expert Algorithm 134  
        6.5.2 Expanded Dual Expert Algorithm 135  
     6.6 Experiment 137  
        6.6.1 Setup 138  
        6.6.2 Results 139  
     6.7 Conclusions 141  
     References 141  
  7 Assistive Optimal Control-on-Request with Application in Standing Balance Therapy and Reinforcement 143  
     7.1 Introduction 143  
     7.2 Assistive Control Synthesis 145  
        7.2.1 Calculating a Schedule of Optimal Infinitesimal Actions 145  
        7.2.2 Computing the Control Duration 150  
     7.3 Human--Robot Interaction in Assisted Balance Therapy 151  
        7.3.1 Related Work: Assist-as-Needed Techniques 152  
        7.3.2 Interactive Simulation Study 153  
     7.4 Human--Robot Communication in Posture Reinforcement: A Short Study 157  
     7.5 Conclusion 160  
     References 161  
  8 Intelligent Human--Robot Interaction Systems Using Reinforcement Learning and Neural Networks 164  
     8.1 Introduction 164  
     8.2 HRI Control: Motivation and Structure Overview of the Proposed Approach 166  
     8.3 Inner Robot-Specific Loop 167  
     8.4 Outer Task-Specific Loop Control 173  
        8.4.1 Task-Specific Outer Loop Control Method: An LQR Approach 173  
        8.4.2 Learning Optimal Parameters of the Prescribed Impedance Model Using Integral Reinforcement Learning 177  
     8.5 Simulation Results 178  
     8.6 Conclusion 185  
     References 185  
  9 Regret-Based Allocation of Autonomy in Shared Visual Detection for Human--Robot Collaborative Assembly in Manufacturing 188  
     9.1 Introduction 188  
     9.2 The Hybrid Cell for Human--Robot Collaborative Assembly 190  
     9.3 Detection Problem Formulation with Focus on the Selected Assembly Task 193  
        9.3.1 Description of the Problem 193  
        9.3.2 Problem Formulation 196  
     9.4 Bayesian Sequential Decision-Making Algorithm for Allocation of Autonomy 197  
     9.5 Inclusion of Regret in Bayesian Decision-Making Algorithm for Allocation of Autonomy 198  
     9.6 Illustration of the Decision-Making Approach 201  
        9.6.1 Illustration of the Optimal Bayesian Decision-Making Approach 201  
        9.6.2 Illustration of the Regret-Based Modified Decision-Making Approach 204  
     9.7 Implementation Scheme of the Regret-Based Bayesian Decision-Making Approach for the Assembly Task 204  
        9.7.1 The Overall Scheme in a Flowchart 204  
        9.7.2 Measurement of Sensing Probability and Observation Cost 207  
        9.7.3 Measurement Method for Regret Intensity 208  
     9.8 Experimental Evaluation of the Regret-Based Bayesian Decision-Making Approach 210  
        9.8.1 Objective 210  
        9.8.2 Hypothesis 210  
        9.8.3 The Evaluation Criteria 211  
        9.8.4 The Experiment Design 211  
        9.8.5 Subjects 211  
        9.8.6 The Experimental Procedures 212  
     9.9 Evaluation Results and Analyses 212  
     9.10 Conclusions and Future Innovations 214  
     References 215  
  10 Considering Human Behavior Uncertainty and Disagreements in Human--Robot Cooperative Manipulation 217  
     10.1 Introduction 217  
     10.2 Human--Robot Cooperative Manipulation 219  
        10.2.1 Cooperative Manipulation 219  
        10.2.2 Control Challenges in Physical Human--Robot Interaction 222  
        10.2.3 Reactive Assistants 222  
        10.2.4 Proactive Assistants 223  
     10.3 Interaction Wrench Decomposition 225  
        10.3.1 Nonuniform Wrench Decomposition Matrices 226  
        10.3.2 Effective and Internal Wrenches 227  
        10.3.3 Load Share and Disagreement 231  
     10.4 Optimal Robot Assistance Considering Human Behavior Uncertainty and Disagreements 231  
        10.4.1 Anticipatory Assistance Based on Learned Models 232  
        10.4.2 The Two-Dimensional Translational Case 237  
        10.4.3 Experiments 239  
     10.5 Conclusions 245  
     References 248  
  11 Designing the Robot Behavior for Safe Human--Robot Interactions 251  
     11.1 Introduction 251  
        11.1.1 The Safety Issues and Existing Solutions 252  
        11.1.2 Safety Problems in HRI: Conflicts in Multiagent Systems 252  
        11.1.3 Safe Control and Exploration 253  
     11.2 Modeling the Human--Robot Interactions 254  
        11.2.1 The Agent Model 254  
        11.2.2 The Closed-Loop System 255  
        11.2.3 Information Structure 256  
     11.3 The Safety-Oriented Behavior Design 257  
        11.3.1 The Safety Principle 257  
        11.3.2 The Safety Index 258  
     11.4 The Safe Set Algorithm (SSA) 260  
        11.4.1 The Control Algorithm 261  
        11.4.2 Online Learning and Prediction of Humans' Dynamics 262  
        11.4.3 Applications 263  
     11.5 The Safe Exploration Algorithm (SEA) 265  
        11.5.1 The Safe Set in the Belief Space 266  
        11.5.2 Learning in the Belief Space 267  
        11.5.3 A Comparative Study Between SSA and SEA 270  
     11.6 Combining SSA and SEA in Time Varying MAS Topology 273  
        11.6.1 The Control Algorithm 274  
        11.6.2 The Learning Algorithm 275  
        11.6.3 Performance 275  
     11.7 Discussions 276  
        11.7.1 The Energy Based Methods 277  
        11.7.2 Limitations and Future Work 277  
     11.8 Conclusion 278  
     References 278  
  12 When Human Visual Performance Is Imperfect---How to Optimize the Collaboration Between One Human Operator and Multiple Field Robots 281  
     12.1 Introduction 281  
     12.2 Human and Robot Performance in Target Classification [4] 283  
     12.3 Optimizing Human--Robot Collaboration for Target Classification 285  
        12.3.1 Predetermined Site Allocation 285  
        12.3.2 Optimized Site Allocation 290  
     12.4 Numerical Results 293  
        12.4.1 Collaboration Between the Human Operator and One Robot [14] 294  
        12.4.2 Predetermined Site Allocation 296  
        12.4.3 Optimized Site Allocation 303  
     12.5 Conclusions 308  
     References 308  
  13 Human-Collaborative Schemes in the Motion Control of Single and Multiple Mobile Robots 310  
     13.1 Introduction 310  
     13.2 Modeling of the Robot and the Interactions 311  
        13.2.1 Mobile Robot 311  
        13.2.2 Communication Infrastructure 313  
        13.2.3 Human--Robot Interface 313  
     13.3 A Taxonomy of Collaborative Human--Robot Control 315  
        13.3.1 Physical Domain of the Robots 315  
        13.3.2 Degree of Autonomy from the Human Operator 316  
        13.3.3 Force Interaction with the Operator 319  
        13.3.4 Near-Operation Versus Teleoperation 321  
        13.3.5 Physical Interaction with the Environment 322  
        13.3.6 Use of Onboard Sensors Only 324  
     13.4 A Taxonomy of Collaborative Human--Multi-robot Control 325  
        13.4.1 Level of Centralization 325  
        13.4.2 Master--Leader--Followers Schemes 326  
        13.4.3 Formation-Orthogonal Control Schemes 327  
        13.4.4 Group-Property Preservation Schemes 328  
        13.4.5 Physical Interaction with Contact 329  
     13.5 Conclusions 330  
     References 331  
  14 A Passivity-Based Approach to Human--Swarm Collaboration and Passivity Analysis of Human Operators 334  
     14.1 Introduction 334  
     14.2 Intended Scenario and Control Goals 337  
     14.3 Control Architecture and Passivity 340  
     14.4 Convergence Analysis 342  
        14.4.1 Synchronization in Position Control Mode 342  
        14.4.2 Synchronization in Velocity Control Mode 346  
     14.5 Passivity of the Human Operator Decision Process 349  
        14.5.1 Experimental Setup and Approach 350  
        14.5.2 Analysis on Human Passivity in Position Control Mode 353  
        14.5.3 Analysis on Human Passivity in Velocity Control Mode 356  
        14.5.4 Analysis on Individual Variability 358  
     14.6 Summary 362  
     References 363  
  15 Human--Swarm Interactions via Coverage of Time-Varying Densities 365  
     15.1 Introduction 365  
     15.2 Human--Swarm Interactions via Coverage 367  
        15.2.1 The Coverage Problem 370  
        15.2.2 Centralized Coverage of Time-Varying Densities 373  
        15.2.3 Distributed Coverage of Time-Varying Densities 377  
     15.3 Designing Density Functions 382  
        15.3.1 Diffusion of Drawn Geometric Configurations 382  
        15.3.2 Control of Gaussian Functions 384  
     15.4 Robotic Experiments 385  
     15.5 Conclusions 388  
     References 389  
  16 Co-design of Control and Scheduling for Human--Swarm Collaboration Systems Based on Mutual Trust 394  
     16.1 Introduction 394  
     16.2 Swarm Setup 397  
        16.2.1 Dynamic Timing Model and Collaboration Delay 397  
        16.2.2 Cooperative Control for Swarm Agents 399  
     16.3 Collaboration Framework 405  
        16.3.1 Trust Model 405  
        16.3.2 Human Performance Model 406  
        16.3.3 Swarm Performance Model 407  
        16.3.4 Human Attention Preference 407  
        16.3.5 Fitness 409  
     16.4 Real-Time Scheduling 410  
     16.5 Simulation Results 411  
        16.5.1 Parameter Setup 411  
        16.5.2 Results and Discussions 413  
     16.6 Conclusions 417  
     References 418  
  Index 421  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz