Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Deep-Sea Mining - Resource Potential, Technical and Environmental Considerations
  Großes Bild
 
Deep-Sea Mining - Resource Potential, Technical and Environmental Considerations
von: Rahul Sharma
Springer-Verlag, 2017
ISBN: 9783319525570
535 Seiten, Download: 23802 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Foreword 5  
  Preface 7  
  Contents 9  
  Part I: Deep-Sea Minerals: Distribution Characteristics and Their Resource Potential 11  
     Chapter 1: Deep-Sea Mining: Current Status and Future Considerations 12  
        1.1 Historical Perspective 12  
        1.2 Economic Issues 17  
        1.3 Technical Issues 20  
           1.3.1 Delineation of Mine-Site and Estimation of Area for Mining 20  
           1.3.2 Mining System Development 21  
           1.3.3 Processing Technology and Waste Management 22  
        1.4 Environmental Issues 23  
           1.4.1 Impact of Environment on Mining 23  
           1.4.2 Impact of Mining on Environment 23  
        1.5 Policy Issues 26  
        References 27  
     Chapter 2: Composition, Formation, and Occurrence of Polymetallic Nodules 31  
        2.1 Introduction 32  
        2.2 Classification and Description 33  
           2.2.1 General Classification 33  
           2.2.2 Macroscopic and Microscopic Descriptions 33  
        2.3 Chemical and Mineralogical Composition 37  
           2.3.1 Chemical Composition 37  
           2.3.2 Mineralogical Composition 44  
        2.4 Formation of Manganese Nodules 47  
           2.4.1 Hydrogenetic Precipitation 47  
           2.4.2 Diagenetic Precipitation 51  
           2.4.3 Microbial Manganese Mobilization and Deposition 58  
           2.4.4 Hydrothermal Precipitation 59  
        2.5 Occurrence of Manganese Nodules 60  
           2.5.1 Clarion-Clipperton Zone 60  
           2.5.2 Peru Basin 63  
           2.5.3 Cook Islands 63  
           2.5.4 Central Indian Ocean Basin 64  
           2.5.5 Other Ocean Areas 65  
        References 65  
     Chapter 3: Marine Co-Rich Ferromanganese Crust Deposits: Description and Formation, Occurrences and Distribution, Estimated World-wide Resources 72  
        3.1 Introduction 72  
        3.2 Occurrence and Nature 73  
        3.3 Mineralogy 78  
        3.4 Formation and Growth Processes 83  
           3.4.1 Hydrogenetic Accretion 83  
           3.4.2 Diagenesis of and Epigenetic Mineral Formation in Older Crust Layers 89  
           3.4.3 Chemical Composition 95  
              3.4.3.1 Introduction 95  
              3.4.3.2 Major Constituents 97  
              3.4.3.3 Minor Elements 101  
              3.4.3.4 Trace Elements 103  
                 Molybdenum and Tungsten 103  
                 Platinum and Palladium 104  
                 Niob and Gallium 111  
                 Tellurium 112  
                 Rare Earth Elements (REE) 114  
              3.4.3.5 Metal Composition Versus Water Depth 119  
              3.4.3.6 Interelement Relationships 122  
        3.5 Total and Regional Metal Potentials 131  
           3.5.1 Resource Assessment Model for Ferromanganese Crust Deposits 131  
           3.5.2 Economic Considerations 136  
           3.5.3 Regional Distribution of Crust Deposits 138  
        3.6 Conclusions 143  
        References 145  
     Chapter 4: Seafloor Massive Sulfide Deposits: Distribution and Prospecting 149  
        4.1 Introduction 149  
        4.2 Historical Review of Hydrothermal Systems and SMS Deposits Study 150  
        4.3 Distribution and Geological Setting of SMS Deposits 152  
        4.4 Morphology of SMS Deposits 156  
        4.5 Composition and Aging of SMS Deposits 161  
           4.5.1 Age of SMS Deposits 162  
        4.6 Formation and Source of Metals in SMS Deposits 163  
        4.7 Criteria for Recognition and Strategy of SMS Exploration 164  
        4.8 Exploration Technologies 165  
           4.8.1 Hydrological Tools 165  
           4.8.2 Geological Sampling Tools 166  
           4.8.3 Remote and Autonomous Operating Vehicles 166  
           4.8.4 Drilling Systems 166  
           4.8.5 Manned Submersibles 167  
        References 167  
     Chapter 5: Submarine Phosphorites: The Deposits of the Chatham Rise, New Zealand, off Namibia and Baja California, Mexico—Origin, Exploration, Mining, and Environmental Issues 171  
        5.1 Introduction 171  
        5.2 Authigenic and Diagenetic Formation of Phosphorite 172  
        5.3 The Chatham Rise Phosphorite 174  
           5.3.1 Regional Setting and Seafloor Morphology 174  
           5.3.2 Oceanographic Setting 177  
           5.3.3 Formation of the Chatham Rise Phosphorites 177  
           5.3.4 Distribution and Composition of the Chatham Rise Phosphorites 179  
           5.3.5 Resource Estimation and Mining Concept 182  
           5.3.6 Exploration History and Present Status (2015) 184  
        5.4 Phosphorite Deposits off South Africa and Namibia 185  
           5.4.1 Diagenetic Phosphorites off South Africa 185  
           5.4.2 Authigenic Phosphorites off Namibia 186  
              5.4.2.1 The Sandpiper Prospect 187  
              5.4.2.2 Mining Concept 187  
              5.4.2.3 Environmental Issues 188  
        5.5 Authigenic Phosphorites off Baja California 189  
        5.6 Future Development Prospects 189  
        References 190  
     Chapter 6: Predictive Mapping of the Nodule Abundance and Mineral Resource Estimation in the Clarion-Clipperton Zone Using Artificial Neural Networks and Classical Geostatistical Methods 194  
        6.1 Introduction 194  
           6.1.1 Scope of Work 194  
           6.1.2 Data Used 195  
           6.1.3 Software Used 196  
        6.2 Description of Study Area 196  
           6.2.1 Bathymetry 196  
           6.2.2 Backscatter Data 198  
        6.3 Predictive Mapping of Manganese Nodule Abundance 199  
           6.3.1 Theoretical Background 199  
              6.3.1.1 Artificial Neural Networks (ANN) 199  
              6.3.1.2 Classical Geostatistics (Kriging) 201  
           6.3.2 Data Processing 201  
           6.3.3 Model Development and Calibration 203  
        6.4 Modelling Results 203  
        6.5 Resource Estimation of Manganese Nodules 207  
           6.5.1 Resource Estimation Based on the ANN Model 207  
           6.5.2 Resource Estimation Based on the Kriging Model 209  
        6.6 Classification of Manganese Mineral Resources 210  
        6.7 Conclusions and Recommendations 212  
        References 214  
     Chapter 7: Statistical Properties of Distribution of Manganese Nodules in Indian and Pacific Oceans and Their Applications in Assessing Commonality Levels and in Exploration Planning 218  
        7.1 Introduction 218  
        7.2 Nature of Data and Sources Used in the Study 219  
           7.2.1 Major Sources of the Data Include 219  
        7.3 Studies on Variabilities of Abundance and Metal Grades in Nodule Deposits 221  
        7.4 Further Studies on Statistical Properties of Distribution of Nodule Abundance 222  
        7.5 Comparative Variability Studies Between CIOB and CCZ 224  
        7.6 Estimation Variance in Relation to Area of Nodule Field 225  
           7.6.1 Verification of the Var(e)·Area Relationship 227  
        7.7 Estimation Variance Computations for Selected Areas in CIOB and CCZ 228  
           7.7.1 Observations on the Estimation Variance Values 229  
        7.8 Commonality in Distribution Characteristics of Nodules in CIOB and CCZ 231  
        7.9 Conclusions 231  
        References 232  
     Chapter 8: Assessment of Distribution Characteristics of Polymetallic Nodules and Their Implications on Deep-Sea Mining 234  
        8.1 Introduction 234  
        8.2 Estimation of Nodule Characteristics and Associated Features 236  
           8.2.1 Measurement of Area Covered on the Seafloor 236  
           8.2.2 Calculation of Nodule Abundance 237  
        8.3 Distribution of Nodule Characteristics and Associated Features 238  
           8.3.1 Frequency Distribution of Nodule: Size, Coverage, Abundance 238  
              8.3.1.1 Nodule Size 238  
              8.3.1.2 Nodule Coverage 241  
              8.3.1.3 Nodule Abundance 241  
           8.3.2 Association of Nodules with Different Substrates 242  
              8.3.2.1 Effect of Sediment Cover 243  
              8.3.2.2 Distribution of Rock Exposures 243  
           8.3.3 Nodule Distribution in Different Topographic Settings 244  
        8.4 Estimation of Mining-Related Variables 245  
           8.4.1 Estimation of Mining Rates 245  
           8.4.2 Estimation of Metal Production (MP) 245  
           8.4.3 Estimation of Metal Value (MV) 246  
           8.4.4 Estimating Total Mineable Area (M) According to UNOET (1987) 246  
           8.4.5 Size (or Area) of Mine-Site (As) According to UNOET (1987) Is 246  
           8.4.6 Area of Contact/Year (Ac) 246  
           8.4.7 Ore Production/Day (Op) 247  
           8.4.8 Volume of Sediment Disturbed at the Seafloor (Vs in m3) 247  
           8.4.9 Wt. of Disturbed Sediment (Wet) or Water Laden Sediment (Ws(wet) in t) 247  
           8.4.10 Wt. of Disturbed Sediment (Dry) or without Water (Ws(dry) in t) 247  
           8.4.11 Wt. of Unwanted Material (Mu) to be Disposed Off (in Mt) 247  
        8.5 Mining Estimates Based on Geological Factors 248  
           8.5.1 Estimation of Mining Rates for Dry and Wet Nodules 248  
           8.5.2 Metal Production for Different Mining Rates 249  
           8.5.3 Mining Estimates for Different Mining Rates 249  
              8.5.3.1 Estimation of Mineable Area 249  
              8.5.3.2 Area (Size) of Mine-Site 250  
              8.5.3.3 Area of Contact 250  
              8.5.3.4 Ore Production 250  
              8.5.3.5 Volume and Weight of Disturbed Sediment 252  
              8.5.3.6 Unwanted Material After Metallurgical Processing 252  
        8.6 Influence of Geological Factors on Mining Design 253  
           8.6.1 Nodule Characteristics 253  
           8.6.2 Association with Different Substrates 253  
           8.6.3 Relation with Topography 254  
           8.6.4 Optimization of Mining Rates 254  
           8.6.5 Ore Production and Area of Mine-Site 254  
           8.6.6 Environmental Impact and Waste Disposal 255  
        8.7 Conclusions 256  
        References 258  
  Part II: Deep-Sea Mining Technology: Concepts and Applications 262  
     Chapter 9: Fundamental Geotechnical Considerations for Design of Deep-Sea Mining Systems 263  
        9.1 Introduction 263  
        9.2 Importance of Geotechnical Characteristics on Design of Mining System 264  
        9.3 Geotechnical Characteristics of Deep-Sea Minerals 268  
           9.3.1 Manganese Nodules and Deep-Sea Sediments 268  
              9.3.1.1 Manganese Nodules 268  
              9.3.1.2 Deep-Sea Sediments 270  
                 Sediment Sampling 270  
                 Static Characteristics 270  
                 Dynamic Characteristics 272  
                 In Situ Measurement 276  
           9.3.2 Seafloor Massive Sulfides 276  
           9.3.3 Cobalt-Rich Manganese Crusts and Seamount Sediments 279  
              9.3.3.1 Crusts and Substrates 279  
              9.3.3.2 Seamount Sediments 282  
                 Sediment Sampling 282  
                 Geotechnical Characteristics 283  
        9.4 Interactions with Mining Systems 285  
           9.4.1 Interactions with Miner 285  
              9.4.1.1 Drag 285  
              9.4.1.2 Separating Force 289  
              9.4.1.3 Seafloor Plume 289  
           9.4.2 Interactions with Lift System 291  
              9.4.2.1 Abrasion of Nodules 291  
              9.4.2.2 Powderization of Sediments 292  
        9.5 Actual Design of Deep-Sea Mining System 293  
        9.6 Environmental Impact Studies and Scale of BIEs 296  
        9.7 Conclusions 297  
        References 299  
     Chapter 10: Concepts of Deep-Sea Mining Technologies 309  
        10.1 Introduction 309  
        10.2 Historical Perspective 312  
        10.3 Present-Day Technology 314  
           10.3.1 Technical Specification of Underwater Mining System 317  
        10.4 Studies Involved in Shallow Water Testing of Underwater Mining System 318  
           10.4.1 Developmental Studies on Hydraulic Devices for Deep Sea in Hyperbaric Chamber 318  
           10.4.2 Developmental Studies on Acoustic Positioning Systems 318  
           10.4.3 Underwater Nodule Imaging System 319  
           10.4.4 Investigations on Interactions of the Seabed with Nodule Collector 321  
           10.4.5 Developmental Studies on Underwater Crushing Systems 321  
           10.4.6 Flexible Riser System 322  
           10.4.7 Development of Testing Facilities and Indigenous Deep-Sea Devices 323  
        10.5 Laying of Artificial Nodules and Mining of Them at Shallow Waters 325  
           10.5.1 Mechanical Systems 326  
           10.5.2 Hydraulic Power Pack 326  
           10.5.3 Servo Valve Pack 326  
           10.5.4 Vane Feeder 327  
           10.5.5 Thrusters 328  
           10.5.6 Electrical Power Distribution System 328  
           10.5.7 Telemetry 328  
           10.5.8 Software 331  
           10.5.9 Artificial Nodules Development 331  
           10.5.10 Control and Operations 332  
           10.5.11 Sea Trials at 520-m Water Depth 333  
        10.6 Development of Mining System for Mining of Artificial Nodules 335  
           10.6.1 Mining Machine 335  
           10.6.2 Specification of Underwater Mining Machine 337  
           10.6.3 Data Acquisition System on Ship 337  
           10.6.4 Telemetry System 339  
           10.6.5 Dynamic Positioning System 340  
           10.6.6 Acoustic Positioning System 341  
           10.6.7 Testing of System 342  
           10.6.8 Launching and Retrieval System 342  
        10.7 In Situ Soil Tester 345  
        References 345  
     Chapter 11: An Application of Ocean Mining Technology: Deep Ocean Water Utilization 348  
        11.1 Introduction 348  
        11.2 Features of Deep Ocean Water 350  
           11.2.1 Water Temperature 350  
           11.2.2 Nutrient Concentration 351  
           11.2.3 Viable Bacterial Count 351  
           11.2.4 Consumable Capacity of DOW 352  
        11.3 Deep Ocean Water Applications 354  
           11.3.1 Ocean Thermal Energy Conversion (OTEC) 354  
           11.3.2 Air Conditioning 354  
           11.3.3 Fisheries Application 355  
           11.3.4 Agricultural Application 355  
           11.3.5 Freshwater Production 356  
           11.3.6 Other Applications 356  
        11.4 Multipurpose DOW Complex Float 356  
           11.4.1 Concept of the Float 356  
           11.4.2 Function of Multiple Systems 357  
              11.4.2.1 Material Input 358  
              11.4.2.2 Production Output 358  
              11.4.2.3 Means and Apparatus 359  
              11.4.2.4 Method of Operation 360  
           11.4.3 Design of the 5 MW Type DOW Float 360  
           11.4.4 Feasibility Study on the DOW Float 362  
           11.4.5 Conclusion 362  
        References 364  
  Part III: Metallurgical Processing and Their Sustainable Development 366  
     Chapter 12: Metallurgical Processing of Polymetallic Ocean Nodules 367  
        12.1 Introduction 367  
           12.1.1 Polymetallic Nodule as an Ore 368  
           12.1.2 Considerations for Metallurgical Processing of Nodule 370  
        12.2 The First Phase of Development of Metallurgical Processes for Nodules (1970–1985) 370  
           12.2.1 The Cuprion Process 370  
           12.2.2 Deep Sea Ventures (DSV) Process 372  
           12.2.3 The Métallurgie Hoboken-Overpelt (MHO) Process 372  
           12.2.4 International Nickel Company (INCO) Process 372  
           12.2.5 High Pressure Acid Leaching Process 374  
        12.3 Second Phase of R and D Efforts for Processing of Nodules (1985–2000) 375  
           12.3.1 Four Metal Recovery by Aqueous Reduction in Acidic Media 375  
           12.3.2 Three Metal Recovery by Aqueous Reduction in Ammoniacal Medium 376  
              12.3.2.1 The National Institute for Resources and Environment (NIRE) of Japan 376  
              12.3.2.2 Reduction Roasting Ammoniacal Leaching Process 376  
        12.4 Recent Developments in Metallurgical Processing of Nodules by Some of the Contractors (2000 Onwards) 379  
           12.4.1 Processes Developed by Various Organizations Sponsored by MOES India 379  
              12.4.1.1 NH3-SO2 Process 379  
              12.4.1.2 Reduction Roasting Ammoniacal Leaching Process 381  
              12.4.1.3 Aqueous Reduction in Sulphuric Acid 381  
           12.4.2 Processes Developed by IOM (an Intergovernmental Consortium of Bulgaria, Cuba, Czech Republic, Poland, Russian Federation, and Slovakia) 381  
              12.4.2.1 Pyro-hydrometallurgical Process 381  
              12.4.2.2 Hydrometallurgical Process 382  
           12.4.3 Processes Developed by COMRA 383  
              12.4.3.1 Pyro-hydrometallurgical Process (Improved INCO Process) 383  
              12.4.3.2 Improved Cuprion Process 383  
           12.4.4 Processes Developed by KIGAM 383  
        12.5 A Few New Concepts 387  
           12.5.1 Direct Use of Nodule Alloy in Stainless Steel 387  
           12.5.2 Process Based on HCl-MgCl2 Leaching 388  
        12.6 Conclusion 388  
        References 391  
     Chapter 13: Sustainable Processing of Deep-Sea Polymetallic Nodules 397  
        13.1 Introduction 398  
        13.2 Sustainability: General Outlook 399  
        13.3 Sustainability and Process Development: Material Flow, Reuse and Critical Metals 400  
        13.4 The Context of Environmental Management 404  
        13.5 Impact Analysis of Processes 407  
           13.5.1 Cradle-to-Gate Environmental Burdens: Common Metal Production and GHG Emissions 407  
           13.5.2 Cradle-to-Gate Environmental Burdens: Several Metals 408  
           13.5.3 GER/CED to Predict Environmental Burdens 410  
           13.5.4 Recycle Rates and CED/GHG 410  
        13.6 Sea Nodules Processing and Sustainability Issues 411  
        13.7 Observations on Sea Nodules Processing Efforts 411  
           13.7.1 Process Research and Flow Sheet Development 412  
           13.7.2 Three Metal Option to Four Metal Option 412  
           13.7.3 Upscaled Flow Sheet 413  
              13.7.3.1 Ni, Co, and Cu Recovery (Approach 1) 414  
              13.7.3.2 Manganese Recovery from Residue (Approach 1) 414  
              13.7.3.3 Ni, Co, and Cu Recovery with Manganese Dissolution (Approach 2) 415  
              13.7.3.4 Smelting of Sea Nodules (Approach 3) 415  
           13.7.4 Flow Sheets and Techno-economic Evaluation 415  
        13.8 Approach for Flow Sheet Impact Analysis: Using Nickel Equivalent 416  
           13.8.1 Partitioning of Flow Scheme for Environmental Impact Using Nickel Equivalent 417  
           13.8.2 Impact of Manganese Recovery 418  
           13.8.3 Impact of Ni, Cu, and Co Recovery 419  
        13.9 Reagents, Recycles, and Effect on GER 420  
        13.10 Beyond Four Metal Recovery Route 420  
        13.11 Conclusions 421  
        References 422  
     Chapter 14: Sustainable Development and Its Application to Mine Tailings of Deep Sea Minerals 425  
        14.1 Introduction 425  
        14.2 Applications in Agriculture 428  
        14.3 Application in Concrete 435  
        14.4 Application as Construction Fill 437  
        14.5 Applications as Industrial Fillers 438  
           14.5.1 Resin Casting-Solid Surface 438  
           14.5.2 Tiles 438  
           14.5.3 Rubber 439  
           14.5.4 Plastic 439  
           14.5.5 Coatings 439  
           14.5.6 Drilling Mud 440  
           14.5.7 Ceramics 440  
        14.6 Conclusions 441  
        References 442  
  Part IV: Environmental Concerns of Impact of Deep-Sea Mining 444  
     Chapter 15: Recent Developments in Environmental Impact Assessment with Regard to Mining of Deep-Sea Mineral Resources 445  
        15.1 Current Status of Deep-Sea Mineral Resources Development 445  
           15.1.1 Applications for Exploration/Exploitation Licenses 446  
           15.1.2 Participation of Private Enterprises 446  
           15.1.3 Current Technical Progress 448  
        15.2 Environmental Impact Evaluation 448  
           15.2.1 Impact Identification Thus Far 449  
           15.2.2 Recent Developments in Environmental Impact Assessment 452  
           15.2.3 Impact Evaluation Process 452  
        15.3 Environmental Conservation Measures 453  
           15.3.1 Initiatives in United Nations 454  
           15.3.2 Ocean Governance in Relation to CBD 454  
           15.3.3 Environmental Conservation in Relation to Deep-Sea Mineral Resources Development 455  
        15.4 Japan’s Initiatives 457  
           15.4.1 Ascertaining the Relationship Between Mining Methods and Environmental Impacts 457  
           15.4.2 Development of Effective Taxonomic Technologies 458  
           15.4.3 Development of Practical Environmental Monitoring System 458  
           15.4.4 Harmonizing with International Trends 458  
        15.5 Conclusion 459  
        References 459  
     Chapter 16: Taxonomic Problems in Environmental Impact Assessment (EIA) Linked to Ocean Mining and Possibility of New Technology Developments 464  
        16.1 The Potential of Deep-Sea Mineral Resource Development 464  
        16.2 Regularization of Environmental Impact Assessments 466  
        16.3 Issues with Environmental Impact Assessments 467  
        16.4 Lack of Human Resources in Taxonomy and Identification for Indexing the Impacts (Issues with Indexing) 470  
           16.4.1 Taxonomy and Identification 470  
           16.4.2 Development of Human Resources 471  
           16.4.3 Issues Related to the Lack of Human Resources in Taxonomy and Identification 472  
        16.5 Molecular Biological Approach in Environmental Impact Assessment 472  
           16.5.1 Application to Species Identification 473  
           16.5.2 Metagenomic Analysis 475  
           16.5.3 Metatranscriptomic Analysis 477  
        16.6 Conclusion 478  
        References 478  
     Chapter 17: Development of Environmental Management Plan for Deep-Sea Mining 482  
        17.1 Introduction 482  
        17.2 Potential Environmental Effects of Deep-Sea Mining 483  
           17.2.1 Potential Seafloor Impacts 484  
           17.2.2 Potential Water-Column Impacts 485  
           17.2.3 Potential Upper-Water Column Impacts 486  
        17.3 Global Efforts to Understand the Environmental Impacts 486  
           17.3.1 Deep Ocean Mining Environment Study by OMI and OMA, USA 486  
           17.3.2 Disturbance and Re-colonisation Experiment by Germany 486  
           17.3.3 Benthic Impact Experiment by NOAA, USA 487  
           17.3.4 Japan Deep-Sea Impact Experiment by MMAJ, Japan 487  
           17.3.5 Interoceanmetal: Benthic Impact Experiment by East European Consortium 487  
           17.3.6 Indian Deep-Sea Environment Experiment by NIO, India 488  
        17.4 Evaluating the Results of the Benthic Impact Experiments (BIEs) 488  
           17.4.1 Mechanism of the Experiments 488  
           17.4.2 Scale of the Experiments 488  
           17.4.3 Estimation of Weight and Volume of Sediment Discharge 490  
           17.4.4 Extrapolation to Commercial Mining 491  
        17.5 Environmental Considerations for Deep-Sea Mining 491  
           17.5.1 Collector Device 491  
           17.5.2 Surface Discharge 491  
           17.5.3 At-Sea Processing, Ore Transfer, and Transport 492  
        17.6 Environmental Management Plan for Deep-Sea Mining 492  
        17.7 International Regulating Agencies for Deep-Sea Mining 493  
           17.7.1 United Nations Convention on the Law of the Sea 493  
           17.7.2 International Seabed Authority 494  
           17.7.3 International Maritime Organization 494  
           17.7.4 World Meteorological Organization 494  
        17.8 Mitigation of Impacts Due to Different Activities 495  
           17.8.1 Components of Marine Mining and Their Mitigation Measures 495  
           17.8.2 Measures for Developing environmentally ‘Safe’ Mining System 498  
           17.8.3 Identification of Preservation Reference Zone (PRZ) 498  
           17.8.4 Hazard Management 499  
              17.8.4.1 Human-Induced Hazards 499  
              17.8.4.2 Natural Hazards 500  
        17.9 Institutional Set-Up and EMP Framework 500  
           17.9.1 Establishment of Environmental Monitoring Office 500  
           17.9.2 Proposed Framework for EMP 501  
        17.10 Conclusions 502  
        References 503  
           Websites (Accessed Between 10 June 2012 and 20 July 2012) 504  
     Chapter 18: The Crafting of Seabed Mining Ecosystem-Based Management 506  
        18.1 Introduction: 2025, the Optimistic 506  
        18.2 From Global to Local: An Imperfect But Forward-­Thinking International Impetus 507  
        18.3 The Ecosystem Approach: The Dynamics of Societies and Ecosystems 510  
        18.4 The Ecosystem Approach in the Deep Sea 512  
        18.5 Building with Nature 513  
        18.6 New Challenges, New Forms of Governance 513  
        18.7 A Nested and Progressive Governance Approach Building on Existing Frameworks and Instruments 514  
        18.8 Ecologically or Biologically Significant Areas: An Inter-­Institutional Process 516  
        18.9 Very Large Marine-Protected Areas: Experimenting Large-Scale Integrated Management 519  
        18.10 The Primacy of a Regional Approach 520  
        18.11 Knowledge and Expertise 520  
        18.12 Ocean Literacy 521  
        18.13 Conclusion: The Way Forward 522  
        References 524  
  Correction to: Composition, Formation, and Occurrence of Polymetallic Nodules 526  
  Index 527  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz