Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Gas Turbine Design, Components and System Design Integration
  Großes Bild
 
Gas Turbine Design, Components and System Design Integration
von: Meinhard T. Schobeiri
Springer-Verlag, 2017
ISBN: 9783319583785
522 Seiten, Download: 29526 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface to the First Edition 5  
  Table of Content 8  
  Nomenclature 15  
  1 Introduction, Gas Turbines, Applications, Types 20  
     1.1 Power Generation Gas Turbines 20  
     1.2 Compressed Air Energy Storage Gas Turbines, CAES 25  
     1.3 Power Generation Gas Turbine Process 27  
     1.4 Significant Efficiency Improvement of Gas Turbines 29  
     1.5 Ultra High Efficiency Gas Turbine With Stator Internal Combustion 33  
     1.6 Aircraft Gas Turbines 36  
     1.7 Aircraft-Derivative Gas Turbines 38  
     1.8 Gas Turbines Turbocharging Diesel Engines 41  
     1.9 Gas Turbine Components, Functions 43  
        1.9.1 Group 1: Inlet, Exhaust, Pipe 44  
        1.9.2 Group 2: Heat Exchangers, Combustion Chamber, After- Burners 45  
        1.9.3 Group 3: Compressor, Turbine Components 48  
     References 49  
  2 Gas Turbine Thermodynamic Process 50  
     2.1 Gas Turbine Cycles, Processes 50  
        2.1.1 Gas Turbine Process 51  
     2.2 Improvement of Gas Turbine Thermal Efficiency 58  
        2.2.1 Minor Improvement of Gas Turbine Thermal Efficiency 59  
        2.2.2 Major Improvement of Gas Turbine Thermal Efficiency 60  
        2.1.3 Compressed Air Energy Storage Gas Turbine 64  
     References 66  
  3 Thermo-Fluid Essentials for Gas Turbine Design 67  
     3.1 Mass Flow Balance 67  
     3.2 Balance of Linear Momentum 69  
     3.3 Balance of Moment of Momentum 71  
     3.4 Balance of Energy 74  
        3.4.1 Energy Balance Special Case 1: Steady Flow 75  
        3.4.2 Energy Balance Special Case 2: Steady Flow, Constant Mass Flow 76  
     3.5 Application of Energy Balance to Gas Turbines Components 76  
        3.5.1 Application: Accelerated, Decelerated Flows 77  
        3.5.2 Application: Combustion Chamber, Heat Exchanger 78  
     3.5.3 Application: Turbine, Compressor 81  
        3.5.3.1 Uncooled turbine. 81  
        3.5.3.2 Cooled turbine: 82  
        3.5.3.3 Uncooled compressor. 83  
        3.5.3.4 Cooled Compressor. 84  
     3.6 Irreversibility and Total Pressure Losses 85  
        3.6.1 Application of Second Law to Turbomachinery Components 87  
     3.7 Flow at High Subsonic and Transonic Mach Numbers 89  
        3.7.1 Density Changes with Mach Number, Critical State 90  
        3.7.2 Effect of Cross-Section Change on Mach Number 95  
        3.7.3 Compressible Flow through Channels with Constant Cross Section 102  
        3.7.4 The Normal Shock Wave Relations 110  
        3.7.5 The Oblique Shock Wave Relations 116  
        3.7.6 Detached Shock Wave 120  
        3.7.7 Prandtl-Meyer Expansion 120  
     References 123  
  4 Theory of Turbomachinery Stages 124  
     4.1 Energy Transfer in Turbomachinery Stages 124  
     4.2 Energy Transfer in Relative Systems 125  
     4.3 General Treatment of Turbine and Compressor Stages 126  
     4.4 Dimensionless Stage Parameters 130  
     4.5 Relation Between Degree of Reaction and Blade Height for a Normal Stage Using Simple Radial Equilibrium 132  
     4.6 Effect of Degree of Reaction on the Stage Configuration 135  
     4.7 Effect of Stage Load Coefficient on Stage Power 137  
     4.8 Unified Description of a Turbomachinery Stage 138  
        4.8.1 Unified Description of Stage with Constant Mean Diameter 138  
        4.8.2 Generalized Dimensionless Stage Parameters 139  
     4.9 Special Cases 141  
        4.9.1 Case 1, Constant Mean Diameter 142  
        4.9.2 Case 2, Constant Mean Diameter and Meridional Velocity Ratio 142  
     4.10 Increase of Stage Load Coefficient, Discussion 143  
     References 145  
  5 Turbine and Compressor Cascade Flow Forces 146  
     5.1 Blade Force in an Inviscid Flow Field 146  
     5.2 Blade Forces in a Viscous Flow Field 151  
     5.3 The Effect of Solidity on Blade Profile Losses 157  
     5.4 Relationship Between Profile Loss Coefficient and Drag 157  
     5.5 Optimum Solidity 159  
        5.5.1 Optimum Solidity, by Pfeil 160  
        5.5.2 Optimum Solidity by Zweifel 161  
     5.6 Generalized Lift-Solidity Coefficient 163  
        5.6.1 Lift-Solidity Coefficient for Turbine Stator 165  
        5.6.2 Turbine Rotor 169  
     References 172  
  6 Losses in Turbine and Compressor Cascades 174  
     6.1 Turbine Profile Loss 175  
     6.2 Viscous Flow in Compressor Cascade 177  
        6.2.1 Calculation of Viscous Flows 177  
        6.2.2. Boundary Layer Thicknesses 178  
        6.2.3 Boundary Layer Integral Equation 179  
        6.2.4 Application of Boundary Layer Theory to Compressor Blades 181  
        6.2.5 Effect of Reynolds Number 185  
        6.2.6 Stage Profile Losses 185  
     6.3 Trailing Edge Thickness Losses 185  
     6.4 Losses Due to Secondary Flows 191  
        6.4.1 Vortex Induced Velocity Field, Law of Bio -Savart, Preparatory 193  
        6.4.2 Calculation of Tip Clearance Secondary Flow Losses 196  
        6.4.3 Calculation of Endwall Secondary Flow Losses 199  
     6.5 Flow Losses in Shrouded Blades 203  
        6.5.1 Losses Due to Leakage Flow in Shrouds 203  
     6.6 Exit Loss 209  
     6.7 Trailing Edge Ejection Mixing Losses of Gas Turbine Blades 211  
        6.7.1 Calculation of Mixing Losses 211  
        6.7.2 Trailing Edge Ejection Mixing Losses 216  
        6.7.3 Effect of Ejection Velocity Ratio on Mixing Loss 216  
        6.7.4 Optimum Mixing Losses 218  
     6.8 Stage Total Loss Coefficient 218  
     6.9 Diffusers, Configurations, Pressure Recovery, Losses 219  
        6.9.1 Diffuser Configurations 220  
        6.9.2 Diffuser Pressure Recovery 221  
        6.9.3 Design of Short Diffusers 224  
        6.9.4 Some Guidelines for Designing High Efficiency Diffusers 227  
     References 228  
  7 Efficiency of Multi-Stage Turbomachines 230  
     7.1 Polytropic Efficiency 230  
     7.2 Isentropic Turbine Efficiency, Recovery Factor 233  
     7.3 Compressor Efficiency, Reheat Factor 236  
     7.4 Polytropic versus Isentropic Efficiency 238  
     References 240  
  8 Incidence and Deviation 241  
     8.1 Cascade with Low Flow Deflection 241  
        8.1.1 Conformal Transformation 241  
        8.1.2 Flow Through an Infinitely Thin Circular Arc Cascade 250  
        8.1.3 Thickness Correction 256  
        8.1.4 Optimum Incidence 256  
        8.1.5 Effect of Compressibility 258  
     8.2 Deviation for High Flow Deflection 259  
        8.2.1 Calculation of Exit Flow Angle 261  
     References 263  
  9 Blade Design 265  
     9.1 Conformal Transformation, Basics 265  
        9.1.1 Joukowsky Transformation 267  
        9.1.2 Circle-Flat Plate Transformation 267  
        9.1.3 Circle-Ellipse Transformation 268  
        9.1.4 Circle-Symmetric Airfoil Transformation 269  
        9.1.5 Circle-Cambered Airfoil Transformation 271  
     9.2 Compressor Blade Design 272  
        9.2.1 Low Subsonic Compressor Blade Design 273  
        9.2.2 Compressors Blades for High Subsonic Mach Number 279  
        9.2.3 Transonic, Supersonic Compressor Blades 280  
     9.3 Turbine Blade Design 281  
        9.3.1 Steps for Designing the Camberline 282  
        9.3.2 Camberline Coordinates Using Bèzier Function 285  
        9.3.3 Alternative Calculation Method 287  
     9.4 Assessment of Blades Aerodynamic Quality 288  
     References 291  
  10 Radial Equilibrium 293  
     10.1 Derivation of Equilibrium Equation 294  
        10.2 Application of Streamline Curvature Method 302  
        10.2.1 Step-by-step solution procedure 304  
     10.3 Compressor Examples 308  
     10.4 Turbine Example, Compound Lean Design 311  
        10.4.1 Blade Lean Geometry 312  
        10.4.2 Calculation of Compound Lean Angle Distribution 313  
        10.4.3 Example: Three-Stage Turbine Design 315  
     10.5 Special Cases 318  
        10.5.1 Free Vortex Flow 318  
        10.5.2 Forced vortex flow 319  
        10.6.3 Flow with constant flow angle 320  
     References 321  
  11 Nonlinear Dynamic Simulation of Turbomachinery Components and Systems 323  
     11.1 Theoretical Background 324  
     11.2 Preparation for Numerical Treatment 331  
     11.3 One-Dimensional Approximation 331  
        11.3.1 Time Dependent Equation of Continuity 331  
        11.3.2 Time Dependent Equation of Motion 333  
        11.3.3 Time Dependent Equation of Total Energy 334  
     11.4 Numerical Treatment 339  
     References 340  
  12 Generic Modeling of Turbomachinery Components and Systems 341  
     12.1 Generic Component, Modular Configuration 343  
        12.1.1 Plenum the Coupling Module 343  
        12.1.2 Group1 Modules: Inlet, Exhaust, Pipe 345  
        12.1.3 Group 2: Heat Exchangers, Combustion Chamber, After- Burners 346  
        12.1.4 Group 3: Adiabatic Compressor and Turbine Components 348  
        12.1.5 Group 4: Diabatic Turbine and Compressor Components 350  
        12.1.6 Group 5: Control System, Valves, Shaft, Sensors 352  
     12.2 System Configuration, Nonlinear Dynamic Simulation 352  
     12.3 Configuration of Systems of Non-linear Partial Differential Equations 356  
     References 356  
  13 Modeling of Inlet, Exhaust, and Pipe Systems 358  
     13.1 Unified Modular Treatment 358  
     13.2 Physical and Mathematical Modeling of Modules 358  
     13.3 Example: Dynamic behavior of a Shock Tube 360  
        13.3.1 Shock Tube Dynamic Behavior 362  
     References 366  
  14 Modeling of Recuperators, Combustion Chambers, Afterburners 367  
     14.1 Modeling Recuperators 368  
        14.1.1 Recuperator Hot Side Transients 369  
        14.1.2 Recuperator Cold Side Transients 369  
        14.1.3 Coupling Condition Hot, Cold Side 370  
        14.1.4 Recuperator Heat Transfer Coefficient 371  
     14.2 Modeling Combustion Chambers 372  
        14.2.1. Mass Flow Transients 373  
        14.2.2. Temperature Transients 374  
        14.2.3 Combustion Chamber Heat Transfer 376  
     14.3 Example: Startup and Shutdown of a Combustion Chamber- Preheater System 378  
     14.4 Modeling of Afterburners 381  
     References 382  
  15 Modeling the Compressor Component, Design and Off-Design 383  
     15.1 Compressor Losses 384  
        15.1.1 Profile Losses 386  
        15.1.2 Diffusion Factor 387  
        15.1.3 Generalized Maximum Velocity Ratio for Stator and Rotor 391  
        15.1.4 Compressibility Effect 393  
        15.1.5 Shock Losses 397  
        15.1.6 Correlations for Boundary Layer Momentum Thickness 406  
        15.1.7 Influence of Different Parameters on Profile Losses 407  
           15.1.7.1 Mach Number Effect: 407  
           15.1.7.2 Reynolds number effect: 408  
           15.1.7.3 Blade thickness effect: 408  
     15.2 Compressor Design and Off-Design Performance 409  
        15.2.1 Stage-by-stage and Row-by-Row Adiabatic Compression Process 409  
           15.2.1.1 Stage-by-stage calculation of compression process: 409  
           15.2.1.2 Row-by-row adiabatic compression: 411  
           15.2.1.3 Off-design efficiency calculation: 415  
           15.3 Generation of Steady State Performance Map 418  
        15.3.1 Inception of Rotating Stall 420  
        15.3.2 Degeneration of Rotating Stall into Surge 422  
     15.4 Compressor Modeling Levels 423  
        15.4.1 Module Level 1: Using Performance Maps 424  
           15.4.1.1 Quasi dynamic modeling using performance maps: 426  
           15.4.1.2 Simulation Example: 427  
           15.4.2 Module Level 2: Row-by-Row Adiabatic Calculation Procedure 429  
           15.4.3 Active Surge Prevention by Adjusting the Stator Blades 430  
     15.4.4 Module Level 3: Row-by-Row Diabatic Compression 431  
        15.4.4.1 Description of diabatic compressor module: 432  
        15.4.4.2 Heat transfer closure equations: 434  
     References 436  
  16 Turbine Aerodynamic Design and Off-design Performance 440  
     16.1 Stage-by-Stage and Row-by-Row Adiabatic Design and Off- Design Performance 442  
        16.1.1 Stage-by-Stage Calculation of Expansion Process 443  
        16.1.2 Row-by-Row Adiabatic Expansion 444  
        16.1.3 Off-Design Efficiency Calculation 449  
        16.1.4 Behavior Under Extreme Low Mass Flows 451  
        16.1.5 Example: Steady Design and Off-Design Behavior of a Multi- Stage Turbine 454  
     16.2 Off-Design Calculation Using Global Turbine Characteristics Method 456  
     16.3 Modeling the Turbine Module for Dynamic Performance Simulation 458  
        16.3.1 Module Level 1: Using Turbine Performance Characteristics 458  
        16.3.2 Module Level 2: Row-by-Row Adiabatic Expansion Calculation 459  
        16.3.3 Module Level 3: Row-by-Row Diabatic Expansion 460  
           16.3.3.1 Description of diabatic turbine module, first method: 462  
           16.3.3.2 Description of diabatic turbine module, second method: 464  
           16.3.3.3 Heat transfer closure equations: 466  
     References 467  
  17 Gas Turbine Design, Preliminary Considerations 468  
     17.1 Gas Turbine Preliminary Design Procedure 469  
     17.2 Gas Turbine Cycle 470  
     17.3 Compressor Design, Boundary Conditions, Design Process 471  
        17.3.1 Design Process 471  
        17.3.2 Compressor Blade Aerodynamics 475  
        17.3.3 Controlling the Leakage Flow 476  
        17.3.4 Compressor Exit Diffuser 476  
        17.3.5 Compressor Efficiency and Performance Maps 476  
        17.3.6 Stagger Angle Adjustment During Operation 478  
     17.4 Combustion Chambers 479  
        17.4.1 Combustion Design Criteria 481  
        17.4.2 Combustion Types 481  
     17.5 Turbine Design, Boundary Conditions, Design Process 483  
        17.5.1 Steps of a Gas Turbine Design Process 483  
        17.5.2 Mechanical Integrity, Components Vibrational 488  
     References 488  
  18 Simulation of Gas Turbine Engines, Design Off-Design and Dynamic Performance 489  
     18 Gas Turbine Engines, Design, Dynamic Performance 490  
        18.1 State of Dynamic Simulation, Background 490  
        18.2 Gas Turbine Configurations 490  
        18.3 Gas Turbine Components, Modular Concept 493  
        18.4 Levels of Gas Turbine Engine Simulations 498  
           18.4.1 Zeroth Simulation Level 498  
           18.4.2 First Simulation Level 498  
           18.4.3 Second Simulation Level 498  
           18.4.4 Third Simulation Level 498  
        18.5 Non-Linear Dynamic Simulation Case Studies 499  
           18.5.1 Case Studies: Compressed Air Energy Storage Plant 500  
              18.5.1.1 Case Study: Emergency Shutdown 503  
              18.5.1.2 Case Study 1: Grid Fluctuation Response 505  
           18.5.2 Case Study 2: Dynamic Simulation of a Gas Turbine under Adverse Operation condition 505  
           18.5.3 Case Studies: Dynamic Simulation of a Split-Shaft Gas Turbine under Adverse Operation condition 510  
              18.5.1.1 Simulation of Compressor Surge: 511  
              18.5.3.2 Case 3.2: Surge Prevention by Stator Stagger Angle Adjustment 513  
           18.5.4 Case Studies: Maximizing the Off-Design Efficiency of a Gas Turbine By Varying the Turbine Stator Stagger Angle 515  
              18.5.4.1 Dynamic Change of Stagger Angle, when Engine is Running 516  
           18.5.5 Case Study 3: Simulation of a Multi-Spool Gas Turbine Engine 518  
     References 521  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz