Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Dealing with Contaminated Sites - From Theory towards Practical Application
  Großes Bild
 
Dealing with Contaminated Sites - From Theory towards Practical Application
von: Frank A. Swartjes
Springer-Verlag, 2011
ISBN: 9789048197576
1121 Seiten, Download: 21102 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  About the Editor 3  
  Preface 7  
  Acknowledgments 9  
     Reviewers 10  
  Contents 12  
  Contributors 15  
  Part I Introduction 27  
     1 Introduction to Contaminated Site Management 28  
        1.1 Status of Contaminated Sites 30  
           1.1.1 History 30  
              1.1.1.1 Early Soil Contamination 30  
              1.1.1.2 Public and Political Awareness 31  
           1.1.2 The Present Situation 32  
              1.1.2.1 Extent of Soil Contamination 32  
              1.1.2.2 Emissions to Soil 32  
           1.1.3 Public Awareness 35  
           1.1.4 The Contaminated Site Management Framework 36  
              1.1.4.1 Schematization 36  
              1.1.4.2 Problem Definition 37  
              1.1.4.3 Protection Targets 38  
              1.1.4.4 Land Use 39  
        1.2 Soils and Sites 40  
           1.2.1 Soils 40  
              1.2.1.1 Definition 40  
           1.2.2 Contaminated Sites 43  
        1.3 Contaminants 45  
           1.3.1 Terminology 45  
           1.3.2 Daily Life 45  
           1.3.3 Categorisation 46  
              1.3.3.1 Metals and Metalloids 47  
              1.3.3.2 Other Inorganic Contaminants (Other than Metals and Metalloids) 48  
              1.3.3.3 Polycyclic Aromatic Hydrocarbons 48  
              1.3.3.4 Monocyclic Aromatic Hydrocarbons 48  
              1.3.3.5 Persistent Organic Pollutants 49  
              1.3.3.6 Volatile Organic Contaminants 49  
              1.3.3.7 Other Organochlorides 50  
              1.3.3.8 Petroleum Hydrocarbons 50  
              1.3.3.9 Asbestos 51  
           1.3.4 Occurrence in Soils and Groundwater 52  
           1.3.5 Mixtures of Contaminants 52  
           1.3.6 Scope of This Book 53  
        1.4 Site Characterisation 53  
        1.5 Risk Assessment 55  
           1.5.1 Principles 55  
           1.5.2 The Concept of Risk 56  
           1.5.3 Procedure 57  
           1.5.4 Reliability 60  
              1.5.4.1 Uncertainties and Variability 60  
              1.5.4.2 Dealing with Uncertainties and Variability 61  
              1.5.4.3 Validation 63  
        1.6 Risk Management 64  
           1.6.1 Scope 64  
           1.6.2 The Source 65  
           1.6.3 Procedures 65  
           1.6.4 Remediation Technologies 66  
              1.6.4.1 Scope 66  
              1.6.4.2 In Situ Remediation Technologies 66  
              1.6.4.3 Ex Situ Remediation Technologies 69  
              1.6.4.4 Barriers 70  
           1.6.5 Ecological Recovery 70  
           1.6.6 Remediation Objectives 71  
        1.7 A Closer Look into Risk Assessment 72  
           1.7.1 Types of Risk Assessment 72  
              1.7.1.1 Purpose 72  
              1.7.1.2 Site-Specific Risk Assessment 72  
              1.7.1.3 Potential Risk Assessment 73  
           1.7.2 Soil Quality Standards 73  
           1.7.3 Measurements 75  
           1.7.4 Laboratory Data Versus Field Data 77  
           1.7.5 Expert Judgement 78  
           1.7.6 Essential Metals 79  
           1.7.7 Background Concentrations 79  
           1.7.8 Spatial Scale 81  
           1.7.9 Time Domain 82  
           1.7.10 Costs of Soil Contamination 83  
           1.7.11 Cost-Benefit Analyses 84  
           1.7.12 Integration of Human Health and Ecological Risk Assessment 84  
           1.7.13 Harmonisation of Risk Assessment Tools 85  
           1.7.14 Brownfields 86  
           1.7.15 Risk Perception and Risk Communication 87  
        1.8 Approaches Towards Contaminated Site Assessment and Management 89  
           1.8.1 Evolution 89  
           1.8.2 Multifunctionality 89  
           1.8.3 Fitness-for-Use 90  
           1.8.4 A More Pragmatic Approach 91  
              1.8.4.1 Mentality Change 91  
              1.8.4.2 Natural Attenuation 91  
           1.8.5 Market-Oriented Approach to Site Development 92  
           1.8.6 Integrated Approaches 93  
              1.8.6.1 Interdepartmental 93  
              1.8.6.2 Spatial Planning 93  
              1.8.6.3 Chemical, Physical and Biological Soil Quality Assessment 94  
              1.8.6.4 Environmental, Socio-Cultural and Economic Assessment 94  
              1.8.6.5 Life Cycle Assessment 94  
           1.8.7 Technical Approaches 95  
              1.8.7.1 Risk Assessment Methodologies 95  
              1.8.7.2 Conceptual Model 96  
              1.8.7.3 Tiered Approach 97  
              1.8.7.4 Weight of Evidence 98  
              1.8.7.5 Decision Support Systems 98  
        1.9 Sustainability 99  
        1.10 Actors Involved 100  
           1.10.1 Decision-Makers and Regulators 100  
           1.10.2 Scientists 102  
           1.10.3 Decision-Makers Versus Scientists 102  
           1.10.4 The Risk Assessor 103  
           1.10.5 Project Managers 104  
           1.10.6 Major International Institutions 105  
        1.11 Scope of the Book 107  
        References 108  
     2 Characteristics of Natural and Urban Soils 115  
        2.1 Soils of Contaminated Sites 116  
           2.1.1 Natural and Anthropogenic Soils 116  
           2.1.2 Imported Filling Materials 120  
        2.2 Inherited Geochemistry 121  
        2.3 Contaminant Behaviour in Soils 129  
           2.3.1 Chemical Affinities and Solubilities 129  
              2.3.1.1 Acids and Bases 130  
              2.3.1.2 Water-Immiscible Contaminants 130  
              2.3.1.3 Metals and Metalloids -- Trace Elements 131  
              2.3.1.4 Salts and Bases of Metal Alkaloids and Boron 131  
              2.3.1.5 Nitrogen and Phosphorus 133  
              2.3.1.6 Contaminants from Hospital Effluents and Sludges Discharged on Soil 134  
           2.3.2 Adsorptive Behaviour and Specific Surface Areas 137  
        2.4 Contamination Potential 138  
           2.4.1 Soils of Deposited Material and Former Industrial Sites 139  
           2.4.2 Additional Sources of Contamination 142  
        2.5 Chemical Characteristics with Reference to Contaminated Sites 145  
        2.6 Physical Characteristics with Reference to Contaminated Sites 148  
        2.7 Case Studies 150  
           2.7.1 The Soil as a Chromatogram -- Barium 150  
           2.7.2 Arsenic in Weathered Rock at the New Victorian Museum, Melbourne 153  
           2.7.3 Chromium in Soils 154  
           2.7.4 Vanadium in Soils 156  
        References 157  
  Part II Site Investigation 161  
     3 A Practical Approach for Site Investigation 162  
        3.1 Introduction 163  
        3.2 Not an Easy Task 163  
        3.3 Objectives for the Investigation of Soil Quality 164  
        3.4 Technical Goals 165  
        3.5 Three Investigation Phases 166  
        3.6 Preliminary Investigation 168  
        3.7 Exploratory Investigation 175  
        3.8 Main Investigation 181  
        3.9 Sampling Patterns 183  
        3.10 Sampling Techniques 184  
        Literature 185  
     4 Statistical Sampling Strategies for Survey of Soil Contamination 187  
        4.1 Introduction 188  
        4.2 Estimating (Parameters of) the Spatial Cumulative Distribution Function 189  
           4.2.1 Sampling Designs 190  
              4.2.1.1 Simple Random Sampling 191  
              4.2.1.2 Stratified Simple Random Sampling 191  
              4.2.1.3 Random Grid Sampling 194  
              4.2.1.4 Advanced Sampling Designs 195  
           4.2.2 Estimation 197  
              4.2.2.1 Spatial Mean 197  
              4.2.2.2 Areal Fraction with Concentrations Exceeding Threshold Concentration 200  
              4.2.2.3 Spatial Cumulative Distribution Function 201  
              4.2.2.4 Median and Other Percentiles 202  
           4.2.3 Using Ancillary Information in Estimation 203  
              4.2.3.1 Post-Stratification Estimator 203  
              4.2.3.2 Regression-Estimator 203  
           4.2.4 Composite Sampling 204  
           4.2.5 Required Number of Sampling Locations 205  
              4.2.5.1 Constraint on Sampling Variance or Coefficient of Variation 205  
              4.2.5.2 Constraint on Probability of Error 206  
              4.2.5.3 Constraints on Error Rates in Testing of a Hypothesis 207  
        4.3 Estimating Mean Concentrations for Delineated Blocks 207  
           4.3.1 Design-Based Approach 208  
              4.3.1.1 Using Data from Outside the Block 209  
           4.3.2 Model-Based Approach 210  
           4.3.3 Required Number of Sampling Locations 210  
              4.3.3.1 Bayesian Data-Worth Analysis 212  
        4.4 Mapping Concentrations at Point Locations 212  
           4.4.1 Sampling Patterns 213  
              4.4.1.1 Purposive Grid Sampling 213  
              4.4.1.2 Spatial Coverage and Spatial Infill Sampling 213  
              4.4.1.3 Geostatistical Sampling 215  
              4.4.1.4 Supplementary Sample for Estimating the Variogram 218  
           4.4.2 Spatial Interpolation 219  
           4.4.3 Required Number of Sampling Locations 221  
        4.5 Detecting and Delineating Hot Spots 221  
           4.5.1 Detecting Hot Spots 222  
              4.5.1.1 Adding Sampling Locations to the Grid 223  
           4.5.2 Delineating Hot Spots 224  
              4.5.2.1 Phased Sampling 224  
              4.5.2.2 Composite Sampling 224  
        References 227  
  Part III Human Health Aspects 229  
     5 Human Health Risk Assessment 230  
        5.1 Introduction 231  
           5.1.1 Threat to Human Health 231  
           5.1.2 Public Perception 232  
        5.2 Principles of Human Health Risk Assessment 233  
           5.2.1 Problem Definition 233  
           5.2.2 Risk Characterisation 233  
           5.2.3 Communication 234  
        5.3 Exposure Assessment 234  
           5.3.1 Definition 234  
           5.3.2 Biomonitoring 235  
           5.3.3 Exposure Calculations 238  
              5.3.3.1 Exposure Models 238  
              5.3.3.2 Contaminant Distribution 239  
              5.3.3.3 Contaminant Transfer 240  
              5.3.3.4 Major Exposure Pathways 240  
              5.3.3.5 Other Exposure Pathways 244  
              5.3.3.6 Overview Exposure Pathways 245  
              5.3.3.7 Exposure Scenarios 245  
              5.3.3.8 Input Parameters 247  
              5.3.3.9 Reliability 248  
              5.3.3.10 Measurements in Contact Media 249  
              5.3.3.11 Good Exposure Assessment Practice 251  
        5.4 Hazard Assessment 252  
           5.4.1 Contaminants in the Human Body 252  
           5.4.2 Threshold and Non-Threshold Effects 253  
           5.4.3 Toxicological Reference Value for Threshold Contaminants 254  
              5.4.3.1 Principles 254  
              5.4.3.2 Assessment Factors 256  
           5.4.4 Toxicological Reference Values for Non-Threshold Contaminants 258  
           5.4.5 Reliability 259  
        5.5 Risk Characterisation 260  
           5.5.1 Site-Specific Risk Assessment 260  
           5.5.2 Soil Quality Standards 261  
           5.5.3 Relevant Time Span 263  
           5.5.4 Background Exposure 265  
           5.5.5 Combined Exposure 267  
        5.6 A Closer Look at Human Health Risk Assessment 268  
           5.6.1 Significance of Exceeding Toxicological Reference Values 268  
           5.6.2 Odour Nuisance and Taste Problems 269  
           5.6.3 Physiologically-Based PharmacoKinetic Modelling 270  
           5.6.4 Probabilistic Human Health Risk Assessment 271  
           5.6.5 Reliability 271  
           5.6.6 Ethical Issues 272  
              5.6.6.1 Human Beings 272  
              5.6.6.2 Animals 273  
           5.6.7 Relationship Scientist and Decision-Makers 273  
           5.6.8 Site-Specific Risk Assessment 273  
        References 275  
     6 Exposure Through Soil and Dust Ingestion 281  
        6.1 Introduction 282  
           6.1.1 General Aspects 282  
           6.1.2 Defining Soil and Dust 282  
           6.1.3 Calculating Exposure Through Ingestion of Soil and Dust 284  
        6.2 Quantification of Soil and Dust Ingestion Rates 285  
           6.2.1 Tracer Element Methodology 285  
           6.2.2 Alternative Approaches for Estimating Soil and Dust Ingestion 294  
           6.2.3 Soil and Dust Ingestion Rates for Children and Adults 296  
           6.2.4 Soil Ingestion Rates Recommended by International Regulatory Bodies 301  
           6.2.5 Representativeness of Soil and Dust Ingestion Rates 301  
        6.3 Conclusions 303  
        References 304  
     7 Oral Bioavailability 307  
        7.1 Theory of Availability 308  
           7.1.1 Oral Bioavailability 309  
              7.1.1.1 Accessibility 310  
              7.1.1.2 Absorption 311  
              7.1.1.3 Metabolisation in the Liver 315  
           7.1.2 Relative Bioavailability Factor 316  
           7.1.3 Validation of Bioaccessibility Tests 319  
        7.2 Influence of Soil Properties on Oral Bioaccessibility 320  
           7.2.1 pH 320  
           7.2.2 Soil Organic Matter 320  
           7.2.3 Mineral Constituents 321  
           7.2.4 Solid Phase Speciation and Bioaccessibility 325  
           7.2.5 Soil Ageing 326  
           7.2.6 Statistical Modelling of Bioaccessibility 326  
           7.2.7 Soil Sampling and Preparation for Bioaccessibility/Bioavailability Measurements 327  
        7.3 Considerations for the Potential Use of Site Specific Bioaccessibility Measurements 328  
        7.4 Examples of Bioaccessibility Studies 329  
           7.4.1 Geogenic Sources 330  
           7.4.2 Anthropogenic Influences 331  
        7.5 The BARGE Network 332  
           7.5.1 Inter-Laboratory Studies 333  
           7.5.2 Utilization of Bioaccessibility Data Across Europe 335  
        References 336  
     8 Uptake of Metals from Soil into Vegetables 345  
        8.1 Introduction 346  
        8.2 Metal and Metalloid Chemistry in Soil 346  
           8.2.1 Cationic Metals 347  
           8.2.2 Anionic Metals/Metalloids 349  
           8.2.3 Effects of Soil Redox 350  
        8.3 Plant Acquisition of Metals and Metalloids from Soil 351  
           8.3.1 Root Uptake Pathway 351  
              8.3.1.1 Speciation and Ion Uptake Rate 351  
              8.3.1.2 Rhizosphere Processes 354  
              8.3.1.3 Ion Competition Effects for Metal and Metalloid Uptake 355  
              8.3.1.4 Translocation of Metals and Metalloids in the Plant 357  
           8.3.2 Foliar Uptake of Metals 364  
        8.4 Integrating Factors Affecting Metal/Metalloid Accumulation by Vegetables 368  
           8.4.1 Type of Metal/Metalloid 368  
           8.4.2 Vegetable Species 369  
           8.4.3 Vegetable Cultivar 370  
           8.4.4 Soil Physical/Chemical Properties 370  
              8.4.4.1 pH 372  
              8.4.4.2 Soil Texture and Depth of Contamination 372  
              8.4.4.3 Soil Organic Matter 372  
              8.4.4.4 Salinity 373  
              8.4.4.5 Redox Potential 373  
              8.4.4.6 Nutrient Status 373  
        8.5 Models to Predict Contaminant Uptake by, or Toxicity to, Vegetables 374  
           8.5.1 Model Characteristics 375  
              8.5.1.1 Constant Heavy Metal Content for Each Plant Species 375  
              8.5.1.2 Soil-Plant Transfer Models 375  
              8.5.1.3 FIAM 377  
              8.5.1.4 Biotic Ligand Model 378  
              8.5.1.5 Physiological Models 378  
              8.5.1.6 Barber-Cushman Mechanistic Model 379  
           8.5.2 Application of Models 379  
        References 380  
     9 Uptake of Organic Contaminants from Soil into Vegetables and Fruits 388  
        9.1 Introduction 390  
        9.2 Uptake and Transport Processes 390  
        9.3 Empirical Methods for Estimating Uptake of Contaminants into Plants 391  
           9.3.1 Bioconcentration Factors 391  
           9.3.2 Regression Equations 393  
           9.3.3 Root Concentration Factor 393  
           9.3.4 Partition Coefficients for Stem and Leaves 395  
           9.3.5 Translocation from Roots into Stem and Leaves 396  
        9.4 Mechanistic Models for Estimating Uptake of Contaminants into Plants 396  
           9.4.1 Processes to Include in a Plant Uptake Model 397  
           9.4.2 Mass Balance for a Dynamic Plant Uptake Model 397  
           9.4.3 Steady-State Solution for the Root and Leaf Model 400  
           9.4.4 General Solutions for a Cascade Model 400  
           9.4.5 Input Data for the Root and Leaf Model 403  
        9.5 Influence of Contaminant-Specific Parameters 403  
           9.5.1 KOW on Accumulation in Roots and Potatoes 403  
           9.5.2 KOW and KAW on Accumulation of Contaminants in Leaves 404  
           9.5.3 Uptake from Air Versus Uptake from Soil 406  
           9.5.4 Dissipation from Soil 407  
           9.5.5 Impact of pKa and pH on Uptake of Ionisable Contaminants 408  
        9.6 Influence of Plant-Specific Parameters 409  
           9.6.1 Crop Types and Uptake Pathways 410  
           9.6.2 Physiological Parameters 410  
           9.6.3 Plant Morphology and Collection Efficiency for Particles 411  
           9.6.4 Variation of Partition Coefficients 413  
           9.6.5 Permeability 413  
           9.6.6 Particle Deposition 414  
           9.6.7 Metabolism in Plants 414  
        9.7 Environmental Variables 416  
           9.7.1 Climate 416  
           9.7.2 Bioavailability 417  
           9.7.3 Soil pH 417  
           9.7.4 Uncertainties in Predictions 417  
        9.8 Uptake Potential of Specific Substance Classes 418  
           9.8.1 Chlorinated Solvents (PCE, TCE and Others) 418  
           9.8.2 Gasoline Contaminants 419  
           9.8.3 Heavy Petroleum Products 419  
           9.8.4 Polycyclic Aromatic Hydrocarbons 419  
           9.8.5 Persistent Organic Pollutants POPs 419  
           9.8.6 Explosives 419  
           9.8.7 Phenols 420  
           9.8.8 Cyanides 420  
        9.9 Monitoring of Contaminants in Soils and Shallow Aquifers with Vegetation 420  
        9.10 Conclusions 422  
        References 422  
     10 Vapor Intrusion 428  
        10.1 Introduction 429  
        10.2 Conceptual Models 429  
           10.2.1 Vapor Source 430  
           10.2.2 Pathway 431  
           10.2.3 Receptor 434  
           10.2.4 Vapor Intrusion Assessment Approach 435  
        10.3 Fate and Transport Processes 437  
           10.3.1 Phase Partitioning 438  
           10.3.2 Biodegradation 440  
           10.3.3 Soil Gas Advection 441  
           10.3.4 Mixing Inside the Building 442  
        10.4 Mathematical Modeling 442  
           10.4.1 Mathematical Model Formulation 443  
              10.4.1.1 Phase Partitioning 443  
              10.4.1.2 Transport Through a Porous Media 445  
              10.4.1.3 Vapor Intrusion into Buildings 446  
              10.4.1.4 Attenuation Factors 446  
           10.4.2 Available Vapor Intrusion Models 447  
              10.4.2.1 Diffusion Models 449  
              10.4.2.2 Diffusion and Convection Models 449  
              10.4.2.3 Dilution Factor Models 451  
              10.4.2.4 Numerical Models 452  
        10.5 Sampling and Analysis 452  
           10.5.1 Sampling and Analysis Challenges 452  
           10.5.2 Pros and Cons of Sampling for Various Soil Compartments 453  
              10.5.2.1 Shallow Groundwater 453  
              10.5.2.2 Sub-Slab Soil Gas 455  
              10.5.2.3 Soil Gas Samples Collected Adjacent to a Building 456  
              10.5.2.4 Indoor Air 458  
              10.5.2.5 Soil Sampling 460  
           10.5.3 Analytical Methods 460  
           10.5.4 Field Screening Considerations 461  
              10.5.4.1 Photoionization Detectors (PIDs) and Flame Ionization Detectors (FIDs) for VOC Screening 461  
              10.5.4.2 Landfill Gas Meters for Oxygen, Carbon Dioxide and Methane Concentrations 462  
              10.5.4.3 Hexafluoride and Helium Meters 462  
              10.5.4.4 Mobile Laboratories 462  
        10.6 Mitigation 463  
           10.6.1 Methods/Technologies for Existing Buildings 463  
              10.6.1.1 Sub-Slab De-Pressurization 463  
              10.6.1.2 Soil Vacuum Extraction 465  
              10.6.1.3 Building Pressurization 465  
              10.6.1.4 Sealing Cracks, Sumps, Sewers, and Other Potential Conduits 465  
              10.6.1.5 Air Filtration 466  
           10.6.2 Methods/Technologies for Future Buildings 466  
              10.6.2.1 Intrinsically Safe Building Design 466  
              10.6.2.2 Vapor Barriers and Ventilation Layers 466  
        References 467  
     11 Human Exposure Pathways 473  
        11.1 Introduction 475  
           11.1.1 Relevant Pathways 475  
           11.1.2 Calculating Exposure 475  
        11.2 Exposure Through Consumption of Vegetables 476  
           11.2.1 Significance 476  
           11.2.2 Conceptual Model 477  
              11.2.2.1 Principles 477  
              11.2.2.2 Differences Between Vegetable Types 478  
              11.2.2.3 Representative Concentration in Vegetables 479  
           11.2.3 Mathematical Equations 479  
              11.2.3.1 Principles 479  
              11.2.3.2 Metals 480  
           11.2.4 Input Parameters 481  
              11.2.4.1 Consumption of Vegetables 481  
              11.2.4.2 Fraction of Vegetables that is Home-Grown 482  
              11.2.4.3 Correction for Relative Bioavailability in the Human Body 483  
           11.2.5 Site-Specific Risk Assessment of Exposure Though Vegetables Consumption 483  
           11.2.6 Further Considerations 484  
           11.2.7 Reliability and Limitations 484  
        11.3 Exposure Through Consumption of Animal Products 484  
           11.3.1 Conceptual Model 485  
              11.3.1.1 Prediction of Contaminant Concentrations in Animal Tissues 485  
              11.3.1.2 Calculation of Human Exposure 486  
           11.3.2 Mathematical Equations 487  
              11.3.2.1 Calculation of Animal Intake 487  
              11.3.2.2 Calculation of the Concentration of Contaminant in Animal Products 487  
              11.3.2.3 Calculation of Human Exposure 493  
           11.3.3 Input Parameters 493  
              11.3.3.1 Intake by Animals 493  
              11.3.3.2 Parameters for Estimating the Concentration in Animal Tissues 495  
              11.3.3.3 Human Consumption of Products 499  
           11.3.4 Reliability and Limitations 499  
        11.4 Exposure Via Domestic Water 501  
           11.4.1 Conceptual Model 502  
           11.4.2 Mathematical Equations 502  
              11.4.2.1 Consumption of Drinking Water 502  
              11.4.2.2 Inhalation of Volatilised Domestic Water 503  
              11.4.2.3 Dermal Contact During Showering 503  
           11.4.3 Input Parameters 504  
              11.4.3.1 Consumption of Drinking Water 504  
              11.4.3.2 Data for Volatilisation and Dermal Pathways 505  
           11.4.4 Reliability and Limitations 505  
           11.4.5 Verification and Validation 506  
        11.5 Exposure Through Inhalation of Vapours Outdoors 506  
           11.5.1 Conceptual Model 507  
           11.5.2 Description of Models 507  
              11.5.2.1 Calculation of Outdoor Air Concentration 508  
              11.5.2.2 Calculation of Exposure 511  
           11.5.3 Input Parameters 512  
              11.5.3.1 Diffusivities 512  
              11.5.3.2 Meteorological Parameters 513  
              11.5.3.3 Receptor Height 513  
           11.5.4 Influence of Physical Properties 514  
           11.5.5 Influence of Human Behaviour 514  
           11.5.6 Reliability and Limitations 514  
           11.5.7 Verification and Validation 515  
        11.6 Exposure Through Inhalation of Dust 515  
           11.6.1 Conceptual Model 516  
           11.6.2 Mathematical Equations 517  
              11.6.2.1 Concentrations of Contaminants in Dust in Air 517  
              11.6.2.2 Derivation of the Particulate Emission Factor 517  
              11.6.2.3 Calculation of Exposure 518  
           11.6.3 Input Parameters 519  
              11.6.3.1 Dust Concentrations in Air 519  
              11.6.3.2 Fraction of Dust from the Contaminated Site 520  
              11.6.3.3 Concentration of Dust in Indoor Air 520  
              11.6.3.4 Fraction of Dust Which is Respirable 521  
              11.6.3.5 Contamination in Dust 521  
           11.6.4 Inhaled Volume 521  
           11.6.5 Influence of Soil Properties 522  
           11.6.6 Influence of Human Behaviour 523  
           11.6.7 Reliability and Limitations 523  
        11.7 Exposure Through Dermal Uptake 524  
           11.7.1 Significance 524  
           11.7.2 Conceptual Model 524  
           11.7.3 Mathematical Equations 525  
           11.7.4 Input Parameters 526  
              11.7.4.1 Dermal Absorption Fractions 526  
              11.7.4.2 Soil Adherence Factors 527  
              11.7.4.3 Skin Surface Area 528  
           11.7.5 Reliability and Limitations 529  
        References 529  
     12 Hazard Assessment and Contaminated Sites 534  
        12.1 Hazard Assessment and Contaminated Sites 536  
        12.2 Hazard Identification 537  
        12.3 Hazard Identification-Toxicology 538  
           12.3.1 Toxicity Testing – Major In Vivo Study Types 539  
           12.3.2 Important Issues in Toxicity Testing and Assessment 540  
              12.3.2.1 Study Protocol and Design 540  
           12.3.3 Assessment of the Quality of the Data Characterising the Hazard 542  
           12.3.4 Analysis and Evaluation of Toxicity Studies 543  
           12.3.5 Analysis and Evaluation of Major Study Parameters 543  
              12.3.5.1 Mortality/ Survival 544  
              12.3.5.2 Clinical Observations 545  
              12.3.5.3 Body Weight Changes 545  
              12.3.5.4 Haematological, Clinical Chemistry, and Urinary Measurements 545  
              12.3.5.5 Absolute and Relative Organ Weights 546  
              12.3.5.6 Post Mortem Observation 546  
              12.3.5.7 Analysis and Evaluation of Study Parameters in Toxicity Studies 546  
              12.3.5.8 Interspecies Scaling of Doses 548  
              12.3.5.9 Route-to-Route Scaling 548  
              12.3.5.10 Other Factors in Scaling of Doses 549  
              12.3.5.11 Extrapolating Occupational Data to the General Public 549  
              12.3.5.12 Statistical Tests 549  
              12.3.5.13 Completion of Hazard Analysis 550  
           12.3.6 Evaluation of the Weight-of-Evidence and Consideration of the Toxicology Database In Toto 551  
           12.3.7 Methods for the Hazard Identification of Carcinogens 552  
           12.3.8 The Hazard Identification Report 553  
        12.4 Hazard Identification-Epidemiology 553  
           12.4.1 Introduction 553  
           12.4.2 Bias and Confounding: Key Concepts in Environmental Epidemiology 554  
           12.4.3 Types of Epidemiological Study – An Overview 555  
              12.4.3.1 Observational Studies 557  
           12.4.4 Assessing the Relationship Between a Possible Cause and an Outcome 557  
           12.4.5 The Strengths and Limitations of Observational Epidemiology Versus Experimental Toxicology 560  
              12.4.5.1 Hazard Identification 561  
           12.4.6 Undertaking Health Studies 562  
        12.5 Dose-Response Assessment 563  
           12.5.1 Introduction 563  
           12.5.2 Methodologies 564  
           12.5.3 Threshold Approaches 565  
           12.5.4 Non-Threshold Approaches 566  
           12.5.5 Threshold Versus Non-Threshold Approaches 567  
           12.5.6 Mechanistically-Derived Models 569  
           12.5.7 Benchmark Dose Approach 569  
           12.5.8 Inter- and Intra-Species Considerations 571  
           12.5.9 Mixtures 571  
           12.5.10 Checklist for Toxicological Appraisals 572  
              12.5.10.1 Hazard Identification 572  
              12.5.10.2 Characterisation of Dose-Response 574  
           12.5.11 Uncertainty and Variability in Hazard Assessment 575  
           12.5.12 Sources of Toxicological and Tolerable Intake Data 575  
        References 583  
  Part IV Ecological Aspects 588  
     13 Introduction to Ecological Risk Assessment 589  
        13.1 Introduction 591  
           13.1.1 Vital Soil 591  
           13.1.2 Terminology, Ranking and Classification 592  
           13.1.3 Public Perception 594  
        13.2 Soil Biology 595  
           13.2.1 Soil Life 595  
           13.2.2 Classification of Organisms 595  
              13.2.2.1 Types of Classification 595  
              13.2.2.2 Fungi 597  
              13.2.2.3 Bacteria 597  
        13.3 Organisms in the Groundwater 598  
        13.4 Significance of the Soil Ecosystem 598  
           13.4.1 The Value of Soil Biology 598  
           13.4.2 Biodiversity 599  
           13.4.3 Ecosystem Services 601  
              13.4.3.1 The Significance of Ecosystem Services 601  
              13.4.3.2 Soil Structuring 602  
              13.4.3.3 Humus Formation 603  
              13.4.3.4 Element Cycling and Nutrient Supply 603  
              13.4.3.5 Cleaning Function 605  
              13.4.3.6 Disease Control 605  
              13.4.3.7 Energy-Related Ecosystem Services 606  
           13.4.4 Above-Ground Biology 607  
           13.4.5 Agriculture 607  
        13.5 Ecological Risk Assessment 608  
           13.5.1 Principles 608  
           13.5.2 Risk Characterisation 609  
           13.5.3 Characteristics of Exposure 610  
              13.5.3.1 Oral and Dermal Exposure 610  
              13.5.3.2 Bioavailability 611  
           13.5.4 Endpoints 613  
           13.5.5 Other Stress Factors 615  
              13.5.5.1 Ecological Impact 615  
              13.5.5.2 Soil Type, Properties and Structure 615  
              13.5.5.3 Food Supply 616  
              13.5.5.4 Sealing and Compaction 616  
           13.5.6 Political Awareness 618  
        13.6 Ecological Risk Assessment in Practice 620  
           13.6.1 Soil Quality Assessment 620  
           13.6.2 Soil Quality Standards 621  
           13.6.3 Site-Specific Risk Assessment 622  
        13.7 A Closer Look into Ecological Risk Assessment 622  
           13.7.1 Resilience and Recovery 622  
           13.7.2 Adaptation 623  
           13.7.3 Land Use 624  
           13.7.4 Secondary Poisoning and Food Web Approach 625  
           13.7.5 Wildlife Protection 626  
           13.7.6 Scale and Contaminant Pattern 627  
           13.7.7 Spatial Planning 628  
        13.8 Sustainability 628  
           13.8.1 Political Significance 628  
           13.8.2 The Benefits of Sustainability 629  
           13.8.3 Agriculture 630  
           13.8.4 Improving Sustainability 631  
        13.9 Monitoring the Soil Ecosystem Quality 631  
           13.9.1 Indicators 631  
           13.9.2 Significance of Monitoring the Soil Ecosystem Quality 632  
           13.9.3 Possibilities for Monitoring 632  
           13.9.4 Biological Classification Systems 633  
              13.9.4.1 Biological Indicator for Soil Quality (BISQ) 634  
        References 635  
     14 Ecological Risk Assessment of Diffuse and Local Soil Contamination Using Species Sensitivity Distributions 641  
        14.1 Aims of this Chapter and Readers Guide 643  
        14.2 Soil Protection Motives and Impacts of Non-Protection 644  
           14.2.1 Protecting Living Soil -- Motives 644  
           14.2.2 Protecting Living Soil -- Handling Diverse Stressor Responses 645  
           14.2.3 Field Effects of Soil Contamination in a Pollution Gradient 645  
           14.2.4 From Field Effects to SSD Modeling 647  
        14.3 SSD Modeling and Practical Needs 648  
           14.3.1 Basics of Distribution Modeling as an Assessment Approach 648  
           14.3.2 Two Practical Needs and Two Useful SSD Applications 650  
        14.4 Theoretical Basis of SSD Modeling 651  
           14.4.1 Why SSDs Fit the Risk Assessment Paradigm and Practices 651  
              14.4.1.1 Hazardous Concentrations 652  
              14.4.1.2 Hazard Potential or Toxic Pressure 653  
           14.4.2 Extrapolation: From Probably to Potentially Affected Fraction 653  
           14.4.3 The Conceptual Interpretation of SSDs: PAF and PES 655  
           14.4.4 Discussions of SSDs, Assumptions and Interpretation 655  
        14.5 Validity of SSD-Based Output in Ecological Risk Assessment 657  
        14.6 SSDs and Ranking of Contaminants or Sites 660  
           14.6.1 SSDs and Ranking Contaminants 660  
           14.6.2 SSDs and Ranking Sites 662  
           14.6.3 SSDs, Rankings and Weighting in SSDs 662  
        14.7 SSDs and Cost Effectiveness of Environmental Management 662  
        14.8 Practical Basis of SSD Modeling 663  
           14.8.1 Ingredient 1: The Input Data 663  
              14.8.1.1 Raw Input Data 663  
              14.8.1.2 Pre-Treatment of Input Data 664  
              14.8.1.3 Example Data Bases 665  
           14.8.2 Ingredient 2: The Statistical Approach 665  
              14.8.2.1 Options for Model Choice 665  
              14.8.2.2 Selecting a Model 665  
              14.8.2.3 Software 666  
        14.9 Statistical Issues in SSD Modeling and Interpretation 666  
           14.9.1 Minimum Data Numbers and (Mis)Fit 666  
           14.9.2 Presenting Confidence Intervals 667  
           14.9.3 Interpreting Statistical Confidence Intervals 668  
           14.9.4 Options to Handle Small Sets of Input Data 670  
           14.9.5 Handling the Possible Causes of Misfit 670  
        14.10 Other Issues in SSD Modeling and Interpretation 671  
           14.10.1 Comparison of Hazard Indices and PAF 671  
           14.10.2 Dealing with Natural Background Concentrations 672  
           14.10.3 The Influence of Soil Type and Soil Properties 673  
           14.10.4 When Soil Concentrations are Very High 673  
           14.10.5 When Soil Concentrations in an Area Vary 675  
           14.10.6 When There is a Mixture of Contaminants 675  
           14.10.7 When the Environmental Problem is Refined: Tiers for SSDs 678  
        14.11 Weight-of-Evidence and Tiered Use of SSD Output 679  
        14.12 Key Strengths and Limitations of SSDs 681  
        14.13 Practices of SSD Use 682  
           14.13.1 Practical Approaches in this Chapter 682  
           14.13.2 Criterion Risk Assessments, the Oldest Use of SSDs 683  
           14.13.3 The Dilemma of Conservative Quality Standards 684  
           14.13.4 From Criterion Risk Assessment to Conventional Risk Assessment 685  
           14.13.5 Conventional Risk Assessments with SSDs: A Versatile Approach 685  
        14.14 Examples of Conventional Risk Assessment of Soil Contamination with SSDs 687  
           14.14.1 Policy Framework Backgrounds -- The Netherlands 687  
           14.14.2 GIS Mapping of Soil Quality 688  
              14.14.2.1 Problem Setting 688  
              14.14.2.2 Approach 689  
              14.14.2.3 Conventional Risk Assessment Results 689  
              14.14.2.4 Management Assessment 690  
              14.14.2.5 Outcome Assessment 691  
           14.14.3 Handling Slightly Contaminated Sediments 691  
              14.14.3.1 Problem Setting 691  
              14.14.3.2 Approach 691  
              14.14.3.3 Conventional Risk Assessment Results 692  
              14.14.3.4 Management Assessment 693  
              14.14.3.5 Outcome Assessment 694  
           14.14.4 Soil Quality Classes and Local Risks to Manage Local Soils 694  
              14.14.4.1 Problem Setting 694  
              14.14.4.2 Approach 695  
              14.14.4.3 Conventional Risk Assessment Results 695  
              14.14.4.4 Management Assessment and Outcome Assessment 696  
           14.14.5 GIS-Mapping of Remediation Sites and Monitoring of Remediation Policies 697  
              14.14.5.1 Problem Setting 697  
              14.14.5.2 Approach 697  
              14.14.5.3 Conventional Risk Assessment Results 697  
              14.14.5.4 Management Assessment 698  
              14.14.5.5 Outcome Assessment 699  
           14.14.6 A Contrasting Approach, the U.S. Superfund 699  
        14.15 Reflections and Conclusions 700  
        References 702  
     15 Site-Specific Ecological Risk Assessment 708  
        15.1 The Soil Ecosystem and Site-Specific Risk Assessment 709  
           15.1.1 Appreciation of the Ecosystem at Contaminated Sites 711  
           15.1.2 Stakeholder Involvement 711  
        15.2 Working Hypotheses, Definition of Conceptual Models and ERA Frameworks 713  
        15.3 Weight of Evidence and the Triad Approach 715  
        15.4 Practical Issues for Adoption of the Triad Approach 716  
           15.4.1 Uncertainty 716  
           15.4.2 Selection of Assessment Tools 717  
           15.4.3 Quantification and Scaling 718  
           15.4.4 Weighting of Effect Values 721  
           15.4.5 Reference Information 722  
        15.5 Integration of Lines of Evidence and Final Results 723  
        15.6 Embedding ERA in Formal Assessment Frameworks 725  
           15.6.1 An Example of a General Framework from the Netherlands 725  
           15.6.2 Examples of the Lines of Evidence in the Dutch Remediation Criterion 726  
        Box 15.1 Chemical characterization of effects 727  
        Toxicity Characterization with Bioassays 728  
        Approximation of Effects from Ecological Field Monitoring 729  
           15.6.3 Outline of ERA in Other Countries 730  
        15.7 Outlook 731  
        References 732  
     16 Bioavalibility in Soils 736  
        16.1 Introduction 737  
        16.2 What is Bioavailability? 738  
        16.3 Impact of Soil Properties on Bioavailability 739  
           16.3.1 Metals and Metalloids 740  
           16.3.2 Organic Contaminants 742  
        16.4 Measurement of Bioavailability 747  
           16.4.1 Extractions for Determining Bioavailability 747  
              16.4.1.1 Metals and Metalloids 748  
              16.4.1.2 Organic Contaminants 750  
           16.4.2 Modelling the Bioavailability of Contaminants 752  
              16.4.2.1 Metals and Metaloids 752  
              16.4.2.2 Organic Contaminants 754  
        16.5 Concluding Remarks 756  
        References 756  
  Part V Groundwater-Related Aspects 762  
     17 Groundwater-Related Risk Assessment 763  
        17.1 Introduction 764  
           17.1.1 Subsurface Water 764  
           17.1.2 Terminology 767  
           17.1.3 Groundwater Quality 768  
              17.1.3.1 Natural Impact on Groundwater 768  
              17.1.3.2 Anthropogenic Impact on Groundwater 768  
              17.1.3.3 Impact of a Revised Quantitative Groundwater Regime 770  
           17.1.4 Scope of the ''Groundwater-Related Aspects (Part V)'' 770  
        17.2 Groundwater as Protection Target 772  
           17.2.1 Human Use 772  
           17.2.2 Ecological Habitat Function 774  
           17.2.3 Intrinsic Value 774  
           17.2.4 Sustainability 775  
           17.2.5 Appreciation 776  
              17.2.5.1 General Public 776  
              17.2.5.2 The Groundwater Ecosystem 778  
              17.2.5.3 Political 778  
        17.3 Groundwater as Contaminant Pathway 779  
           17.3.1 Source-Pathway-Receptor Approach 779  
           17.3.2 Transport Characteristics 780  
              17.3.2.1 General Transport Pattern 780  
              17.3.2.2 Impact of Heterogeneous Soils or Aquifer 781  
              17.3.2.3 Impact of Surface Water Bodies and Anthropogenic Subsurface Processes and Structures 781  
        17.4 Calculating Contaminant Transport 782  
           17.4.1 Conceptual Models 782  
           17.4.2 Mathematical Models 783  
              17.4.2.1 Role and Principles 783  
              17.4.2.2 Numerical Models 784  
           17.4.3 Reliability of Model Calculations 785  
              17.4.3.1 Uncertainties 785  
              17.4.3.2 Dealing with Uncertainties 788  
           17.4.4 Good Modelling Practice 788  
        17.5 Risk Management 790  
           17.5.1 Scope 790  
           17.5.2 Natural Attenuation 790  
           17.5.3 Regional Approaches 791  
        17.6 Sampling and Monitoring 791  
           17.6.1 Purpose 791  
           17.6.2 Groundwater Concentration Pattern 791  
           17.6.3 Lysimeters and Column Experiments 792  
        17.7 A Closer look into Groundwater-Related Risk Assessment 793  
           17.7.1 Impact of Climate Change 793  
           17.7.2 Mingling Groundwater Plumes 794  
           17.7.3 Risk Perception and Communication 795  
           17.7.4 European Water Framework Directive and Groundwater Daughter Directive 795  
        17.8 Site-Specific Assessment of Exposure Through Contaminant Transport 796  
        References 796  
     18 Leaching of Contaminants to Groundwater 800  
        18.1 Introduction 801  
        18.2 Variably Saturated Water Flow 803  
           18.2.1 Water Retention and Hydraulic Conductivity 804  
              18.2.1.1 Water Retention 804  
              18.2.1.2 Hydraulic Conductivity 808  
           18.2.2 Mass Balance Equation 810  
           18.2.3 Preferential Flow 812  
           18.2.4 The Evapotranspiration Process 812  
           18.2.5 Penman-Monteith Equation for Evapotranspiration 814  
           18.2.6 FAO56 Reference Evapotranspiration 815  
           18.2.7 Root Water Uptake 816  
           18.2.8 Application: Numerical Simulations of Variably Saturated Flow in a Soil Profile 817  
              18.2.8.1 Single-Layer Soil 817  
              18.2.8.2 Two-Layer Soil 820  
        18.3 Contaminant Transport 821  
           18.3.1 Transport Processes 822  
              18.3.1.1 Diffusion 823  
              18.3.1.2 Dispersion 824  
              18.3.1.3 Advection 825  
           18.3.2 Advection-Dispersion Equations 826  
              18.3.2.1 Transport Equations 826  
              18.3.2.2 Linear and Non-Linear Sorption 827  
              18.3.2.3 Volatilization 827  
              18.3.2.4 Initial and Boundary Conditions 829  
           18.3.3 Nonequilibrium Transport 830  
              18.3.3.1 Physical Nonequilibrium 830  
              18.3.3.2 Chemical Nonequilibrium 832  
              18.3.3.3 Colloid-Facilitated Solute Transport 833  
           18.3.4 Stochastic Models 834  
              18.3.4.1 Flow and Transport Parameter Heterogeneity 834  
              18.3.4.2 Stream Tube Models 838  
           18.3.5 Multicomponent Reactive Solute Transport 839  
           18.3.6 Multiphase Flow and Transport 840  
        18.4 Analytical Models 841  
           18.4.1 Analytical Approaches 841  
           18.4.2 Existing Models 841  
              18.4.2.1 One-Dimensional Models 841  
              18.4.2.2 Multi-Dimensional Models 842  
        18.5 Numerical Models 842  
           18.5.1 Numerical Approaches 842  
              18.5.1.1 Finite Differences 843  
              18.5.1.2 Finite Elements 844  
           18.5.2 Existing Models 844  
              18.5.2.1 Single-Species Solute Transport Models 844  
              18.5.2.2 Biogeochemical Transport Models 847  
        18.6 Concluding Remarks 852  
        References 854  
     19 Contaminant Fate and Reactive Transport in Groundwater 864  
        19.1 Introduction 865  
        19.2 Basic Theory on Contaminant Transport 866  
           19.2.1 Contamination Sources and Plume Formation 867  
           19.2.2 Advection 869  
           19.2.3 Hydrodynamic Dispersion 869  
           19.2.4 Sorption 872  
           19.2.5 Biodegradation 874  
        19.3 Contaminant Transport Models 877  
           19.3.1 Governing Equations 878  
           19.3.2 Mathematical Models 879  
           19.3.3 Model Application 881  
        19.4 Reactive Transport Scenarios 882  
        19.5 Case Study: Transport of Ammonium from a Landfill 889  
        19.6 Summary and Conclusions 895  
        References 895  
  Part VI Risk Management 899  
     20 Sustainability and Remediation 900  
        20.1 Introduction 901  
        20.2 Concepts 902  
           20.2.1 Sustainability 902  
              20.2.1.1 Sustainability Appraisal in Overview 902  
              20.2.1.2 Using Indicators in Sustainability Appraisal 903  
              20.2.1.3 The Driver, Pressure, State, Impact and Response (DPSIR) Framework 907  
           20.2.2 Risk Management 908  
              20.2.2.1 Risk Management Principles 908  
              20.2.2.2 Institutional Controls 910  
           20.2.3 Sustainable Remediation 911  
           20.2.4 Frameworks 913  
           20.2.5 International Initiatives in Sustainable Remediation 919  
           20.2.6 Communicating Sustainability and Risk Management 921  
        20.3 Using Sustainability Appraisal in Remediation Option Appraisal 923  
           20.3.1 The Scope of Sustainability Appraisal as a Decision Support Process in Projects 924  
              20.3.1.1 Using an Indicator Hierarchy 925  
              20.3.1.2 Using Key Performance Indicators (KPIs) 927  
              20.3.1.3 Agreeing Sustainability Indicator Approaches for Remediation 927  
           20.3.2 Using Sustainability for Technology Promotion and for Corporate Reporting 928  
              20.3.2.1 Promotion of Remediation Technologies 928  
              20.3.2.2 Linkage to Corporate Reporting 928  
           20.3.3 Frameworks and Boundaries 929  
           20.3.4 Techniques and Tools and Their Applicability 932  
              20.3.4.1 Systems Using Scores, Rankings, Weightings, Including Multi-Criteria Analysis 932  
        Box 20.1 Multi-Criteria Analysis (MCA) 933  
           20.3.4.2 Best Available Technique (BAT) 934  
           20.3.4.3 Carbon Footprint (''Area'') 934  
           20.3.4.4 Carbon Balance (Flows) 935  
           20.3.4.5 Cost Benefit Analysis 935  
           20.3.4.6 Cost Effectiveness Analysis 937  
           20.3.4.7 Eco-Efficiency 937  
           20.3.4.8 Ecological Footprint 938  
           20.3.4.9 Energy Intensity/Efficiency 938  
           20.3.4.10 Risk Assessment 938  
           20.3.4.11 Environmental Impact Assessment/Strategic Environmental Assessment 939  
           20.3.4.12 Financial Risk Assessment 940  
           20.3.4.13 Industrial Ecology 940  
           20.3.4.14 Life Cycle Assessment 941  
           20.3.4.15 Quality of Life Capital Assessment 942  
        20.4 Applied Sustainable Remediation 942  
        20.5 Case Studies 945  
           20.5.1 Soil Redevelopment in the Volgermeerpolder, Amsterdam, the Netherlands 945  
           20.5.2 Wind Powered Passive Aeration Remediation Systems 946  
           20.5.3 Sustainable Reuse of Contaminated Sediments 948  
           20.5.4 The Use of the REC Method to Select a Remediation Strategy 948  
           20.5.5 ''Sanergy'' as a Sustainable Synergy of Remediation and Groundwater Energy 950  
        20.6 The Future Perspective of Sustainable Management of Contaminated Sites 952  
           20.6.1 A New Basis for Decision Making 952  
           20.6.2 Work in Progress 952  
           20.6.3 Technological Innovation by Combining State of the Art Techniques 953  
           20.6.4 Synergies: Go with the Flow 953  
        References 954  
     21 In Situ Remediation Technologies 960  
        21.1 Introduction 961  
           21.1.1 Background of In Situ Remediation 961  
           21.1.2 Scope 962  
        21.2 In Situ Remediation Technologies 963  
           21.2.1 Principles 963  
              21.2.1.1 Equilibrium Relations of Organic Contaminants in Soil 963  
              21.2.1.2 Limiting Environmental Factors 967  
           21.2.2 In Situ Technologies 972  
              21.2.2.1 Source Oriented In Situ Technologies 972  
              21.2.2.2 Path Oriented In Situ Technologies 975  
              21.2.2.3 Receptor Oriented In Situ Technologies 977  
        21.3 Integration of In Situ Technologies in Risk Management 978  
           21.3.1 Risk Management Concepts and Frameworks 978  
           21.3.2 Risk Management Application 980  
           21.3.3 Risk Management at Contaminated Megasites 981  
              21.3.3.1 Starting the IMS 981  
              21.3.3.2 Risk Assessment 981  
              21.3.3.3 Management Scenarios 983  
              21.3.3.4 Implementation 983  
        21.4 Outlook 984  
        References 985  
     22 Natural Attenuation 989  
        22.1 Introduction 990  
           22.1.1 Principles 990  
           22.1.2 History 991  
           22.1.3 Definition 992  
           22.1.4 Political and Practical Acceptance 993  
        22.2 Principles of Natural Attenuation 994  
           22.2.1 Plume Development and Transport Processes 994  
           22.2.2 Proving Natural Attenuation and Implementing Monitored Natural Attenuation 996  
           22.2.3 Methods to Prove Monitored Natural Attenuation 998  
        22.3 Natural Attenuation at Petroleum Hydrocarbon Contaminated Sites 1002  
           22.3.1 Characteristics of Petroleum Hydrocarbon Mixtures 1002  
           22.3.2 Natural Attenuation Potential and Challenges at Petroleum Hydrocarbon Contaminated Sites 1004  
        22.4 Natural Attenuation at Chlorinated Hydrocarbon Contaminated Sites 1006  
           22.4.1 Characteristics of Chlorinated Hydrocarbons 1006  
           22.4.2 Evaluation of Natural Attenuation Potential and Challenges at Chlorinated Hydrocarbon Contaminated Sites 1008  
           22.4.3 Enhanced Natural Attenuation 1010  
        22.5 Natural Attenuation at Tar Oil Contaminated Sites 1010  
           22.5.1 Introduction 1010  
           22.5.2 Characteristics of Tar Oil 1011  
              22.5.2.1 Tar Oil Components 1011  
           22.5.3 Natural Attenuation Potential of Tar Oil 1017  
           22.5.4 Summary 1018  
        22.6 Conclusions and Outlook 1019  
        References 1021  
  Part VII Frameworks 1025  
     23 Bringing Sustainable Management of Contaminated Sites into Practice The Role of Policy and Regulations 1026  
        23.1 Introduction 1027  
        23.2 The Development of an Environmental Policy for Soil in the European Union 1029  
           23.2.1 The Status of Soil and Soil Contamination 1029  
              23.2.1.1 Agricultural Areas 1030  
              23.2.1.2 Natural Areas 1030  
              23.2.1.3 Urban Areas and Infrastructures 1030  
              23.2.1.4 Sediments 1031  
           23.2.2 Prevention of Contamination and Management of Contaminated Sites 1032  
        23.3 Three Generations of National Contaminated Sites Management Policies 1034  
           23.3.1 Generation 1: Command and Control Regulations by National Authorities 1035  
           23.3.2 Generation 2: Flexibility in National Regulations, Room for Local Site Specific Decisions 1035  
           23.3.3 Generation 3: Regulations are Used to Create Opportunities and to Remove Barriers for Remediation by Private Parties 1036  
        23.4 Contaminated Site Networks and Network Debates 1036  
           23.4.1 Environment Versus Spatial Planning as a Driver for Remediating Contaminated Sites 1037  
           23.4.2 Generic Soil ''Numbers'' Versus Site Specific Risk Assessment 1038  
           23.4.3 Risk Management 1039  
        23.5 A Policy Makers View on Risk Assessment for Contaminated Sites 1040  
           23.5.1 A General Framework for Risk Assessment for Contaminated Sites 1041  
           23.5.2 Risk Assessment and Risk Management 1043  
           23.5.3 The Role of a Scientist in Risk Assessments 1045  
              23.5.3.1 Framing Uncertainty 1045  
              23.5.3.2 Modelling Uncertainty 1045  
              23.5.3.3 Statistical Uncertainty 1046  
              23.5.3.4 Decision Theoretic Uncertainty 1046  
           23.5.4 Risk Perception and Communication 1046  
        23.6 Risk-Based Land Management -- The Concept 1046  
           23.6.1 The Term ''Risk-Based Land Management'' 1047  
              23.6.1.1 Risk 1047  
              23.6.1.2 Land 1048  
              23.6.1.3 Management 1048  
           23.6.2 The Components of Risk-Based Land Management 1048  
              23.6.2.1 Fitness for Use 1048  
              23.6.2.2 Protection of the Environment 1049  
              23.6.2.3 Long-Term Care 1049  
        23.7 Application of RBLM in Practice 1050  
           23.7.1 Risk Reduction 1051  
              23.7.1.1 The Time Frame 1051  
              23.7.1.2 Choice of Solution 1051  
           23.7.2 Land Use Related Requirements 1052  
              23.7.2.1 Practical Needs 1052  
              23.7.2.2 Spatial Planning Requirements 1053  
           23.7.3 Using Natural Capacities in the Soil and Water Environment 1054  
           23.7.4 Costs 1055  
              23.7.4.1 Types of Cost 1055  
              23.7.4.2 Balancing Costs and Benefits 1055  
           23.7.5 Involving Stakeholders 1056  
           23.7.6 Managing Uncertainties 1056  
              23.7.6.1 Technical and Scientific Uncertainties 1056  
              23.7.6.2 Decision-Making 1057  
           23.7.7 Other Management Constraints and Influences 1057  
        23.8 Concluding Remarks 1058  
        References 1060  
     24 A Stakeholder's Perspective on Contaminated Land Management 1063  
        24.1 What is NICOLE and What is This Chapter About? 1064  
        24.2 The Road to Sustainable Risk Based Land Management 1066  
        24.3 A Strategic Approach to Contaminated Site Management: The End State Vision 1067  
        24.4 Improving the Efficiency of Site Assessment 1069  
        24.5 Remediation of Contaminated Sites and Waste Management 1071  
        24.6 The Power of Natural Processes 1072  
        24.7 Managing Megasites 1073  
        24.8 Brownfields: A Blessing in Disguise? 1076  
        24.9 Redeveloping Contaminated Industrial Sites: A UK Developers Perspective 1077  
        24.10 A Sustainable Future? 1079  
           24.10.1 Sustainable Approaches 1079  
           24.10.2 Applied Sustainability -- A Case Study 1081  
        24.11 Conclusions 1082  
        Appendix: 10 Years of Progress: Two Road Maps to Contaminated Land Management 1083  
           What is Behind Redrawing the Site Management Map? 1084  
        References 1085  
     25 Sustainable Brownfield Regeneration 1086  
        25.1 Doing the Right Thing -- Right 1087  
        25.2 What are Brownfields? 1087  
        25.3 What is Regeneration? 1089  
        25.4 What is Sustainable Regeneration? 1089  
        25.5 Re Concepts in Regeneration 1092  
        25.6 Brownfield Regeneration: A Multi Stakeholder Challenge 1093  
        25.7 The CABERNET Brownfield Process Manager 1093  
        Box 25.1 The CABERNET Opportunity Plan (CABERNET 2005) 1094  
        25.8 International Brownfield Definitions 1095  
           25.8.1 Europe Union 1095  
           25.8.2 UK 1098  
        Box 25.2 Extract from Parliamentary Debate on the Definition of Previously Developed Land 1099  
           25.8.3 USA 1100  
           25.8.4 Comparison of Brownfield Definitions 1101  
        25.9 Typologies of Brownfield Sites 1103  
           25.9.1 Economic 1103  
           25.9.2 Temporal 1104  
        25.10 Sustainable Regeneration 1105  
        25.11 The Need for Vision 1106  
        25.12 Applying a Systems Analysis Approach to Brownfield Redevelopment 1108  
        25.13 Opportunities for Synergy (e.g. Carbon, Energy and Waste Management) 1108  
        25.14 Future Perspectives 1108  
        Box 25.3 Failed Vision Creates Brownfields 1109  
        References 1110  
  Index 1112  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz