Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Atomic Force Microscopy
  Großes Bild
 
Atomic Force Microscopy
von: Bert Voigtländer
Springer-Verlag, 2019
ISBN: 9783030136543
329 Seiten, Download: 11144 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 7  
  Contents 9  
  1 Introduction 15  
     1.1 Scanning Tunneling Microscopy (STM) 18  
     1.2 Introduction to Atomic Force Microscopy 22  
     1.3 A Short History of Scanning Probe Microscopy 25  
     1.4 Summary 25  
     References 26  
  2 Harmonic Oscillator 28  
     2.1 Free Harmonic Oscillator 28  
     2.2 Free Harmonic Oscillator with Damping 31  
     2.3 Driven Harmonic Oscillator 32  
     2.4 Driven Harmonic Oscillator with Damping 34  
     2.5 Transients of Oscillations 39  
     2.6 Dissipation and Quality Factor of a Damped Driven Harmonic Oscillator 41  
     2.7 Effective Mass of a Harmonic Oscillator 42  
     2.8 Linear Differential Equations 44  
     2.9 Summary 45  
     References 46  
  3 Technical Aspects of Atomic Force Microscopy 47  
     3.1 Piezoelectric Effect 47  
     3.2 Extensions of Piezoelectric Actuators 50  
     3.3 Piezoelectric Materials 54  
     3.4 Tube Piezo Element 56  
        3.4.1 Resonance Frequencies of Piezo Tubes 59  
     3.5 Non-linearities and Hysteresis Effects of Piezoelectric Actuators 63  
        3.5.1 Hysteresis 63  
        3.5.2 Creep 65  
        3.5.3 Thermal Drift 66  
     3.6 Vibration Isolation 67  
        3.6.1 Isolation of the Microscope from Outer Vibrations 67  
        3.6.2 The Microscope Considered as a Vibrating System 71  
        3.6.3 Combining Vibration Isolation and a Microscope with High Resonance Frequency 73  
     3.7 Building Vibrations 76  
     3.8 Summary 78  
     References 79  
  4 Atomic Force Microscopy Designs 80  
     4.1 Coarse Positioners 80  
        4.1.1 Inertial Sliders 80  
     4.2 AFM Scanners 85  
        4.2.1 Flexure-Guided Piezo Nanopositioning Stages 85  
        4.2.2 Closed Loop Operation of Piezoelectric Nanopositioners 86  
     4.3 AFM Design with a Tube Scanner 89  
     4.4 AFM Design with Scanners Operating in Closed Loop 90  
     4.5 AFM Designs for Large Samples 92  
     4.6 AFM Designs for Vacuum Operation 93  
        4.6.1 Pan Slider 93  
        4.6.2 KoalaDrive 94  
        4.6.3 Tip Exchange 96  
     4.7 Summary 96  
     References 97  
  5 Electronics and Control for Atomic Force Microscopy 98  
     5.1 Time Domain and Frequency Domain 98  
     5.2 Voltage Divider 99  
     5.3 Impedance, Transfer Function, and Bode Plot 100  
     5.4 Output Resistance/Input Resistance 101  
     5.5 Noise 103  
     5.6 Operational Amplifiers 105  
        5.6.1 Voltage Follower/Impedance Converter 106  
        5.6.2 Voltage Amplifier 107  
     5.7 Current Amplifier 108  
     5.8 Feedback Controller 110  
        5.8.1 Proportional Controller 112  
        5.8.2 Integral Controller 113  
        5.8.3 Proportional-Integral Controller 115  
        5.8.4 Time Discrete Implementation of a PI Controller 116  
        5.8.5 Instabilities of a Feedback Loop 118  
        5.8.6 Measurement of Transfer Functions 120  
     5.9 Feedback Controller in AFM 121  
     5.10 Implementation of an AFM Feedback Controller 124  
     5.11 Digital-to-Analog Converter 126  
     5.12 Analog-to-Digital Converter 127  
     5.13 High-Voltage Amplifier 128  
     5.14 Summary 129  
     References 129  
  6 Lock-in Technique 130  
     6.1 Lock-in Amplifier–Principle of Operation 130  
     6.2 Summary 134  
  7 Data Representation and Image Processing 135  
     7.1 Data Representation 135  
     7.2 Image Processing 140  
     7.3 Data Analysis 142  
     7.4 Summary 145  
     References 145  
  8 Artifacts in AFM 146  
     8.1 Tip-Related Artifacts 146  
     8.2 Scanner-Related Artifacts 151  
     8.3 Feedback-Related Artifacts 152  
     8.4 Artifacts Due to Periodic Noise 153  
     8.5 Thermal Drift 154  
     8.6 Laser Interference 155  
     8.7 Summary 155  
     References 155  
  9 Work Function, Contact Potential, and Kelvin Probe AFM 157  
     9.1 Work Function 157  
     9.2 Effect of a Surface on the Work Function 158  
     9.3 Surface Charges and External Electric Fields 160  
     9.4 Contact Potential 163  
     9.5 Measurement of Work Function by the Kelvin Method 163  
     9.6 Kelvin Probe Scanning Force Microscopy (KPFM) 165  
     9.7 Summary 167  
     References 167  
  10 Forces Between Tip and Sample 168  
     10.1 Tip-Sample Forces 168  
     10.2 Tip-Sample Contact Mechanics 171  
     10.3 Capillary Tip-Sample Forces 175  
     10.4 Electrostatic Tip-Sample Force 176  
     10.5 Snap-to-Contact 177  
     10.6 Summary 182  
     References 183  
  11 Cantilevers and Detection Methods in Atomic Force Microscopy 184  
     11.1 Requirements for Force Sensors 184  
     11.2 Fabrication of Cantilevers 186  
     11.3 Beam Deflection Atomic Force Microscopy 188  
        11.3.1 Sensitivity of the Beam Deflection Method 189  
        11.3.2 Detection Limit of the Beam Deflection Method 191  
     11.4 Other Detection Methods 193  
     11.5 Cantilever Excitation in Dynamic AFM 194  
     11.6 Calibration of AFM Measurements 196  
        11.6.1 Experimental Determination of the Sensitivity Factor in AFM 197  
        11.6.2 Calculation of the Spring Constant from the Geometrical Data of the Cantilever 198  
        11.6.3 Sader Method for the Determination of the Spring Constant of a Cantilever 199  
        11.6.4 Thermal Method for the Determination of the Spring Constant of a Cantilever 200  
        11.6.5 Experimental Determination of the Sensitivity and Spring Constant in AFM Without Tip-Sample Contact 202  
     11.7 Summary 203  
     References 204  
  12 Static Atomic Force Microscopy 205  
     12.1 Principles of Static Atomic Force Microscopy 205  
     12.2 Properties of Static AFM Imaging 207  
     12.3 Constant Height Mode in Static AFM 208  
     12.4 Friction Force Microscopy (FFM) 209  
     12.5 Force-Distance Curves 210  
     12.6 Summary 214  
     References 214  
  13 Amplitude Modulation (AM) Mode in Dynamic Atomic Force Microscopy 215  
     13.1 Parameters of Dynamic Atomic Force Microscopy 215  
     13.2 Principles of Amplitude Modulation Dynamic Atomic Force Microscopy 216  
     13.3 Amplitude Modulation (AM) Detection Scheme in Dynamic … 222  
     13.4 Experimental Realization of the AM Detection Mode 225  
     13.5 Time Constant in AM Detection 227  
     13.6 Dissipative Interactions in the Dynamic AM Detection Mode 229  
     13.7 Dependence of the Phase on the Damping and on the Force Gradient 232  
     13.8 Summary 234  
     References 235  
  14 Intermittent Contact Mode/Tapping Mode 236  
     14.1 Dynamic Atomic Force Microscopy with Large Oscillation Amplitudes 236  
     14.2 Resonance Curve for an Anharmonic Force-Distance Dependence 242  
     14.3 Amplitude Instabilities for an Anharmonic Oscillator 245  
     14.4 Energy Dissipation in Tapping Mode Atomic Force Microscopy 249  
     14.5 General Equations for Amplitude and Phase in Dynamic AM … 252  
     14.6 Properties of the Intermittent Contact Mode/Tapping Mode 256  
     14.7 Summary 257  
     References 257  
  15 Mapping of Mechanical Properties Using Force-Distance Curves 259  
     15.1 Principles of Force-Distance Curve Mapping 259  
     15.2 Mapping of the Mechanical Properties of the Sample 262  
     15.3 Summary 263  
     References 263  
  16 Frequency Modulation (FM) Mode in Dynamic Atomic Force Microscopy—Non-contact Atomic Force Microscopy 264  
     16.1 Principles of FM Detection in Dynamic Atomic Force Microscopy 265  
        16.1.1 Expression for the Frequency Shift 268  
        16.1.2 Normalized Frequency Shift in the Large Amplitude Limit 271  
        16.1.3 Recovery of the Tip-Sample Force 273  
     16.2 Experimental Realization of the FM Detection Scheme 274  
        16.2.1 Self-Excitation Mode 274  
        16.2.2 Frequency Detection with a Phase-Locked Loop (PLL) 279  
        16.2.3 PLL Tracking Mode 282  
     16.3 The Non-monotonous Frequency Shift in AFM 284  
     16.4 Comparison of Different AFM Modes 286  
     16.5 Summary 287  
     References 288  
  17 Noise in Atomic Force Microscopy 289  
     17.1 Thermal Noise Density of a Harmonic Oscillator 289  
     17.2 Thermal Noise in the Static AFM Mode 292  
     17.3 Thermal Noise in the Dynamic AFM Mode with AM Detection 292  
     17.4 Thermal Noise in Dynamic AFM with FM Detection 293  
     17.5 Sensor Displacement Noise in the FM Detection Mode 295  
     17.6 Total Noise in the FM Detection Mode 296  
     17.7 Measurement of System Parameters in Dynamic AFM 297  
     17.8 Comparison to Noise in STM 299  
     17.9 Signal-to-Noise Ratio in Atomic Force Microscopy FM Detection 300  
     17.10 Summary 302  
     References 302  
  18 Quartz Sensors in Atomic Force Microscopy 303  
     18.1 Tuning Fork Quartz Sensor 303  
     18.2 Quartz Needle Sensor 304  
     18.3 Determination of the Sensitivity of Quartz Sensors 307  
     18.4 Summary 309  
     References 309  
  A Horizontal Piezo Constant for a Tube Piezo Element 310  
  B Spectral Density, Spectrum and their Experimental Calibration 313  
  C Corrections to the Thermal Method 318  
  D Frequency Noise in FM Detection 322  
  Index 325  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz