Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Paper Microfluidics - Theory and Applications
  Großes Bild
 
Paper Microfluidics - Theory and Applications
von: Shantanu Bhattacharya, Sanjay Kumar, Avinash K Agarwal
Springer-Verlag, 2019
ISBN: 9789811504891
231 Seiten, Download: 9826 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: A (einfacher Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 6  
  Contents 9  
  About the Editors 11  
  1 A Historical Perspective on Paper Microfluidic Based Point-of-Care Diagnostics 14  
     Abstract 14  
     1.1 Introduction 14  
     1.2 Paper Microfluidics: Historical Perspective 15  
     1.3 Outline 16  
     References 17  
  2 Fluid Transport Mechanisms in Paper-Based Microfluidic Devices 19  
     Abstract 19  
     2.1 Introduction 20  
     2.2 Fluid Transport 23  
        2.2.1 Classical Lucas-Washburn Equation (Capillary Flow) 24  
        2.2.2 Darcy’s Law for Fluid Flow 26  
        2.2.3 Fluid Transport in the Porous Media of Varying Cross Section/Arbitrary Shape 27  
        2.2.4 Radial Fluid Transport in Porous Media 30  
        2.2.5 Diffusion-Based Fluid Transport 31  
        2.2.6 Lateral Flow Immunoassay (LFIA) 32  
     2.3 Summary 38  
     References 38  
  3 Fabrication Techniques for Paper-Based Microfluidic Devices 41  
     Abstract 41  
     3.1 Introduction 41  
     3.2 Fabrication Methods 43  
        3.2.1 2D Fabrication Methods 43  
        3.2.2 Flexographic Printing 45  
        3.2.3 3D Fabrication Methods 53  
     3.3 Comparison of Various Fabrication Methods 56  
     References 56  
  4 Flow Control in Paper-Based Microfluidic Devices 58  
     Abstract 58  
     4.1 Introduction 58  
     4.2 Fluid Flow Through Porous Substrates 59  
        4.2.1 Lucas-Washburn Equation 59  
        4.2.2 Darcy’s Equation for Fluid Flow 60  
        4.2.3 Richard’s Equation for Partially Saturated Flows 60  
     4.3 Controlling the Fluid Flow in Paperfluidic Devices 61  
        4.3.1 Techniques to Achieve Flow Control Without Valves 62  
           4.3.1.1 Changing the Channel Dimensions 62  
           4.3.1.2 Creation of Alternate Flow Paths 62  
           4.3.1.3 Changing the Surface Wettability 63  
           4.3.1.4 Changing the Properties of the Porous Substrate 65  
           4.3.1.5 Increasing the Resistance to Fluid Flow Using Physicochemical Barriers 65  
           4.3.1.6 Electrostatic Interactions Between Device Components 66  
           4.3.1.7 Varying the Channel Dimensions for Specific Introduction of Reagents 67  
        4.3.2 Techniques to Achieve Flow Control Utilizing Valve-Like Tools 68  
           4.3.2.1 Dissolvable Species 68  
           4.3.2.2 Mechanical Tools Which Connect or Disconnect Channels 69  
           4.3.2.3 Wax-Based Valves 71  
           4.3.2.4 Fluidic Diodes 72  
           4.3.2.5 Automatically Actuated External Valves 73  
     4.4 Challenges to Translation of Flow Control-Based Paperfluidic Devices 74  
     References 75  
  5 Paper Microfluidic Based Device for Blood/Plasma Separation 78  
     Abstract 78  
     5.1 Introduction 79  
     5.2 Physiological Hemodynamics and Porous Media Hemodynamics 81  
     5.3 Recent Advances in Paper Based Blood Plasma Separation Devices 82  
     5.4 Summary and Future Perspectives 89  
     References 90  
  6 Evolution of Paper Microfluidics as an Alternate Diagnostic Platform 93  
     Abstract 93  
     6.1 Introduction 94  
     6.2 Point-of-Care (POC) Diagnostics 95  
     6.3 Fabrication of Paper-Based Devices 96  
     6.4 Diagnostic Assays 99  
        6.4.1 Chemical-Based Assays 100  
        6.4.2 Immunoassays 101  
        6.4.3 DNA Hybridization on Paper 102  
     6.5 Blood Plasma Separation 103  
     6.6 Limitations of the Assays 104  
     6.7 Three-Dimensional (3D) Paper Devices 105  
     6.8 Conclusions and Outlook 106  
     References 106  
  7 Paper-Based Microfluidic Devices for the Detection of DNA 109  
     Abstract 109  
     7.1 Introduction 109  
     7.2 Evolution of Paper-Based Devices 111  
     7.3 Principle of Detection/Reaction Mechanism 112  
     7.4 Fabrication Schemes of Microfluidic Paper-Based Devices 113  
        7.4.1 Wax Printing 113  
        7.4.2 Photolithography 115  
        7.4.3 Inkjet Printing 115  
        7.4.4 Laser Treatment 115  
        7.4.5 Plasma Treatment 116  
        7.4.6 Wet Etching 116  
     7.5 Applications of ?PADs in DNA Sensing 118  
     7.6 Conclusions 119  
     References 121  
  8 Nucleic Acid Amplification on Paper Substrates 124  
     Abstract 124  
     8.1 Introduction 124  
     8.2 Nucleic Acid Extraction 126  
     8.3 Nucleic Acid Amplification 128  
        8.3.1 Loop-Mediated Isothermal Amplification (LAMP) 129  
        8.3.2 Helicase-Dependent Amplification (HDA) 134  
        8.3.3 Recombinase Polymerase Amplification (RPA) 137  
        8.3.4 Rolling Circle Amplification (RCA) 139  
        8.3.5 Strand Displacement Amplification (SDA) 140  
     8.4 Detection of the Amplified DNA 142  
        8.4.1 Colorimetric Detection 142  
        8.4.2 Fluorescence Detection 143  
     8.5 Factors Affecting the Efficiency of DNA Amplification on Paper 144  
        8.5.1 Choice of the Amplification Technique 145  
        8.5.2 Choice of the Paper Substrate 149  
        8.5.3 Role of Reagent Storage, Transport and Rehydration 150  
     8.6 Conclusion 151  
     References 152  
  9 Paper-Based Devices for Food Quality Control 156  
     Abstract 156  
     9.1 Introduction 157  
     9.2 Paper-Based Sensors in Microfluidics 158  
     9.3 Fabrication Techniques 160  
        9.3.1 Two-Dimensional Cutting 162  
        9.3.2 Wax Patterning 162  
        9.3.3 Flexographic Printing 162  
        9.3.4 Alkyl Ketene Dimer (AKD) Printing 163  
        9.3.5 Three-Dimensional (3D) Paper-Based Microfluidics 163  
        9.3.6 Additional Functional Elements 163  
     9.4 Applications to Food Quality Testing 165  
        9.4.1 Control of Food Adulteration 165  
        9.4.2 Pathogen Detection in Food 166  
        9.4.3 Pesticides and Herbicides Detection in Food 167  
        9.4.4 Heavy Metals in Food 167  
     9.5 Summary 167  
     References 168  
  10 Paper Based Sensors for Environmental Monitoring 173  
     Abstract 173  
     10.1 Introduction 173  
     10.2 Development of Paper Based Sensor 176  
     10.3 Detection Techniques 177  
        10.3.1 Calorimetry Detection 177  
        10.3.2 Surface-Enhanced Raman Spectroscopy (SERS) Based Detection 178  
        10.3.3 Electrochemical Detection 179  
        10.3.4 Luminescence Based Detection 180  
     10.4 Paper Based Sensors for Environmental Monitoring 181  
        10.4.1 Paper Based Sensor for Water Quality Monitoring 181  
        10.4.2 Paper Based Sensor for Air Quality Monitoring 184  
     10.5 Challenges 185  
     10.6 Conclusion 186  
     References 187  
  11 Paper-Based Energy Storage Devices 190  
     Abstract 190  
     11.1 Introduction 190  
     11.2 Fabrication Methods 192  
        11.2.1 Printing 192  
        11.2.2 Pencil Drawing 194  
        11.2.3 Chemical and Physical Deposition 196  
        11.2.4 Vacuum Filtration and Dip Coating 197  
     11.3 Conclusion 197  
     References 198  
  12 Paper-Based Devices for Wearable Diagnostic Applications 199  
     Abstract 199  
     12.1 Introduction 199  
     12.2 Fabrication Techniques of Microfluidic Paper-Based Analytical Devices 200  
        12.2.1 Photolithography 200  
        12.2.2 Inkjet Printing 201  
        12.2.3 Laser Cutting 202  
        12.2.4 Wax Printing 203  
        12.2.5 Polydimethyl-Siloxane (PDMS) Printing 203  
     12.3 Detection Techniques 203  
        12.3.1 Colorimetric Detection 203  
        12.3.2 Electrochemical Detection 205  
        12.3.3 Chemiluminescence Detection 205  
        12.3.4 Fluorescence 206  
        12.3.5 Electrochemiluminescence 206  
     12.4 Applications 207  
     12.5 Challenges and Future of Microfluidic Paper-Based Analytical Devices 210  
     12.6 Summary 212  
     References 213  
  13 Paper Microfluidic-Based Devices for Infectious Disease Diagnostics 215  
     Abstract 215  
     13.1 Introduction 215  
     13.2 Pathogen Detection 216  
        13.2.1 Escherichia Coli 216  
        13.2.2 Plasmodium 217  
        13.2.3 HIV 218  
        13.2.4 HBV 219  
        13.2.5 ZIKA Virus 220  
     13.3 Health Diagnostics 220  
     13.4 Commercialization and Challenges 226  
     13.5 Conclusion and Future Perspectives 228  
     References 230  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz