Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Automotive Tribology
  Großes Bild
 
Automotive Tribology
von: Jitendra Kumar Katiyar, Shantanu Bhattacharya, Vinay Kumar Patel, Vikram Kumar
Springer-Verlag, 2019
ISBN: 9789811504341
342 Seiten, Download: 11031 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 6  
  Contents 9  
  About the Editors 11  
  General 14  
  1 Introduction of Automotive Tribology 15  
     1.1 Introduction 15  
        1.1.1 Friction 16  
        1.1.2 Wear 16  
        1.1.3 Lubrication 17  
        1.1.4 Factors Which Affect the Tribological Performance 18  
        1.1.5 Application of Tribology 19  
     References 24  
  New Materials for Automotive Applications 26  
  2 Tribological Aspects of Automotive Engines 27  
     2.1 Introduction 27  
     2.2 Automotive Engine Tribology 29  
        2.2.1 Engine 29  
        2.2.2 Engine Lubrication Regimes and Wear Calculations 29  
        2.2.3 Piston Ring Assembly 30  
        2.2.4 Engine Bearing 31  
        2.2.5 Valve-Train 32  
        2.2.6 Cam Follower 32  
     2.3 Transmission and Drive Line Tribology 33  
        2.3.1 Transmission Line 33  
        2.3.2 Traction Drive Components 33  
        2.3.3 Wheel Bearing 34  
        2.3.4 Drive Chain 34  
     2.4 Trends in Automotive Engine Tribology 34  
        2.4.1 New Material Development 34  
        2.4.2 Development of Nano-tribology 35  
     2.5 Trends in Automotive Lubricants 35  
        2.5.1 Engine Lubricants 35  
        2.5.2 Gear Lubricants 36  
        2.5.3 Axle Lubricants 36  
        2.5.4 Solid Lubricants 36  
     2.6 Summary 37  
     References 37  
  3 The Potential of Natural Fibers for Automotive Sector 40  
     3.1 Introduction 41  
     3.2 Applications of Natural Fibre-Reinforced Polymer Composites (NFRC) 43  
     3.3 Advantages of Natural Fibre-Reinforced Polymer Composites 43  
     3.4 Disadvantages of Natural Fibre-Reinforced Polymer Composites 44  
     3.5 Classification of Natural Fibres 44  
     3.6 Mechanical Testing of Natural-Fibre Composites 45  
        3.6.1 Tensile Strength of Composite 45  
        3.6.2 Elongation at Break (%) 47  
        3.6.3 Impact Strength 47  
        3.6.4 Flexural Strength 48  
        3.6.5 Stiffness 48  
        3.6.6 Dynamic Mechanical Analysis 49  
     3.7 Applications in the Automobile Sector 50  
        3.7.1 Interior Components 50  
        3.7.2 Exterior Components 55  
     3.8 Limitations 55  
     3.9 Conclusions 55  
     References 56  
  4 Future of Metal Foam Materials in Automotive Industry 59  
     4.1 Introduction 60  
     4.2 Production Methods of Close Cell Metal Foams 61  
        4.2.1 Blowing Agent Techniques 62  
        4.2.2 Powder Metallurgy Technique (Trade Name—Alulight) 62  
        4.2.3 Melt Route Method (Trade Name—Alporas) 63  
        4.2.4 Foaming by Gas Injection (Trade Name—Alcan or Cymat) 64  
     4.3 Properties of Some of the Commercially Available Al Foams 65  
     4.4 Applications and Commercialization of Close-Cell Metal Foam 66  
        4.4.1 Light Weight Construction and Energy Absorption Applications 67  
        4.4.2 Light Weight Construction with Damping Insulation 68  
        4.4.3 Multi-functional Application 68  
     4.5 Conclusion 69  
     References 69  
  5 Study of Tribo-Performance and Application of Polymer Composite 72  
     5.1 Introduction 72  
     5.2 Tribology 73  
        5.2.1 Tribo-Testing Machines 76  
     5.3 Tribological Properties of Polymer 76  
     5.4 Tribological Properties of Fibre Reinforced Polymer Composite Materials 82  
        5.4.1 Glass Fibre Composite 84  
        5.4.2 Carbon Fibre Composite 85  
        5.4.3 Natural Fibre Composite 91  
     5.5 Tribological Application of Composite Materials 91  
        5.5.1 Gears 94  
        5.5.2 Brake Pads 95  
        5.5.3 Springs 97  
     5.6 Conclusions 98  
     5.7 Future Works 101  
     References 101  
  6 Mechanical and Erosion Characteristics of Natural Fiber Reinforced Polymer Composite: Effect of Filler Size 107  
     6.1 Introduction 108  
     6.2 Types of Natural Fibers 109  
        6.2.1 Composite Fabrication Techniques 110  
        6.2.2 Particle Size Distribution of Mill Scale 112  
        6.2.3 Mechanical Characterization 112  
     6.3 Erosion Behavior of NFRP Composites 115  
        6.3.1 Air Jet Erosion Test Rig 115  
        6.3.2 Effect of Impingement Angle on Erosion Rate with Varying Mill Scale Size in Composites 116  
        6.3.3 Effect of Impact Velocity on Erosion Rate with Varying Mill Scale Size in Composites 118  
        6.3.4 Effect of Environment Temperature on Erosion Rate with Varying Mill Scale Size in Composites 119  
     6.4 Conclusion 119  
     References 120  
  7 Erosive Wear Behaviour of Carbon Fiber/Silicon Nitride Polymer Composite for Automotive Application 123  
     7.1 Introduction 124  
     7.2 Materials and Methods 125  
        7.2.1 Composite Fabrication 125  
        7.2.2 Solid Particle Erosion 128  
     7.3 Result and Discussion 128  
     7.4 Conclusion 133  
     References 133  
  8 Effects of Reinforcement on Tribological Behaviour of Aluminium Matrix Composites 136  
     8.1 Introduction 136  
     8.2 Reinforcement Particle in AMC 137  
     8.3 Techniques of Manufacturing AMCs 138  
        8.3.1 Squeeze Casting 139  
        8.3.2 Compocasting 140  
        8.3.3 Stir Casting 140  
     8.4 Tribology of AMCs 141  
     8.5 Mechanical Properties of AMCs 144  
     8.6 Applications of AMCs 145  
     8.7 Conclusion 146  
     References 146  
  New Lubricants for Automotive Applications 149  
  9 Current and Future Trends in Grease Lubrication 150  
     9.1 Introduction 151  
        9.1.1 Background 151  
        9.1.2 Overview of Lubricants 151  
     9.2 Grease 152  
     9.3 Grease Composition 153  
        9.3.1 Base Oil 153  
        9.3.2 Thickener 156  
        9.3.3 Additives 157  
     9.4 General Method for Grease Synthesis 158  
     9.5 Test Methods 159  
        9.5.1 Physical Property Testing 159  
        9.5.2 Tribological Performance Testing 164  
     9.6 Grease Specification for Automotive Industry 167  
     9.7 Grease Lubrication Mechanism 167  
     9.8 Grease Tribology 171  
     9.9 Compatibility of Greases 180  
     9.10 Application of Grease 180  
     9.11 Summary 181  
     References 182  
  10 Lubrication Effectiveness and Sustainability of Solid/Liquid Additives in Automotive Tribology 186  
     10.1 Introduction 186  
        10.1.1 Preparation Method of Lubricants/Vapor Deposition 187  
        10.1.2 Physical Properties of Steel and Ball-on-Disk Test Procedure 188  
        10.1.3 Theory of Sliding Friction and Wear 189  
        10.1.4 Tribological Investigation 190  
        10.1.5 Influencing Wear Parameters 193  
        10.1.6 Conclusions and Future Directions 197  
     References 198  
  11 Potential of Bio-lubricants in Automotive Tribology 200  
     11.1 Introduction 200  
     11.2 Lubrication and Lubricants 202  
     11.3 Bio-lubricants 203  
        11.3.1 Bio-lubricant Properties 204  
        11.3.2 Biodegradability 207  
        11.3.3 Merits and Demerits of Bio-lubricant 208  
        11.3.4 Bio-lubricants in Automotive Tribology 209  
     11.4 Conclusion 214  
     References 214  
  Surface Morphologies for Automotive Applications 218  
  12 Influence of Surface Texturing on Friction and Wear 219  
     12.1 Introduction 220  
     12.2 Texturing on Tribo Surface Using Milling Operation 224  
     12.3 Investigating the Tribological Properties Using Pin-on-Disc Tribometer 226  
     12.4 Understanding the Mechanisms Involved During Tribo Tests 231  
        12.4.1 Lubricant Reservoirs Leading to Friction Reduction 231  
        12.4.2 Presence of Third Bodies in the Dimples (Dry Condition) 232  
        12.4.3 Increase in COF with the Increase in Load and Texture Density 232  
        12.4.4 Understanding the Severity of the Wear on the Counter Surface Against the Textured Surface 233  
     12.5 Conclusion 235  
     References 235  
  13 Magneto Rheological Fluid Based Smart Automobile Brake and Clutch Systems 238  
     13.1 Introduction 238  
        13.1.1 Constituents of Magneto Rheological Fluid 239  
        13.1.2 Operational Mode for Magnetorheological Fluid 243  
     13.2 Need for Magneto Rheological Fluid 244  
     13.3 Mathematical Modelling 245  
        13.3.1 Magnetic Properties of Suspended Particles 245  
        13.3.2 Viscous Incompressible Flow with Pressure Gradient 246  
        13.3.3 Magneto Rheological Fluid Models 248  
     13.4 Magneto Rheological Fluid 255  
        13.4.1 Synthesis and Characterization 256  
     13.5 Sedimentation Test 257  
     13.6 Applications of MR Fluid 258  
        13.6.1 Magneto-Rheological Brake and Clutch System 259  
     13.7 Classification of MR Fluid Based Braking System 261  
        13.7.1 Drum Brake 261  
        13.7.2 Inverted Drum Brake 262  
        13.7.3 T-Shaped Rotor Brake 263  
        13.7.4 Disk Type Brake 264  
        13.7.5 Multiple Disk Brake 265  
     13.8 Summary 266  
     References 266  
  14 Shot Peening Effects on Abrasive Wear Behavior of Medium Carbon Steel 270  
     14.1 Introduction 270  
     14.2 Experimental Details 273  
        14.2.1 Specimen Preparation for Shot Peening 273  
        14.2.2 Shot Peening 273  
        14.2.3 Abrasive Wear Test 275  
        14.2.4 Micro-hardness Measurements 277  
     14.3 Results and Discussion 277  
        14.3.1 Materials and Microstructure 277  
        14.3.2 Microstructure After Shot Peening 278  
        14.3.3 Micro Hardness 279  
        14.3.4 Wear Behaviour 280  
     14.4 Conclusion 284  
     References 285  
  15 Tribological Performance of Surface Textured Automotive Components: A Review 287  
     15.1 Introduction 288  
     15.2 Texture Design 289  
        15.2.1 Texture Geometry 289  
        15.2.2 Texture Position 295  
     15.3 Surface Texturing in Automotive Components 297  
        15.3.1 Cylinder Liner 298  
        15.3.2 Wet Clutch 298  
        15.3.3 Piston Ring 299  
        15.3.4 Engine Bearings 299  
     15.4 Texture Fabrication Techniques 300  
     15.5 Concluding Remarks 302  
     References 302  
  16 Applications of Tribology on Engine Performance 307  
     16.1 Introduction 308  
     16.2 Automotive Tribology and Its Importance 308  
     16.3 Components of IC Engine Subjected to Friction and Wear 309  
        16.3.1 Piston Rings 310  
        16.3.2 Journal Bearings 312  
        16.3.3 Valve Train 313  
     16.4 Tribological Improvements of IC Engine 315  
        16.4.1 Engine Friction Reduction 316  
        16.4.2 Hybridization and Engine Downsizing 320  
        16.4.3 New Combustion Concepts 321  
     16.5 Summary 322  
     References 323  
  17 Asbestos Free Braking Pads by Using Organic Fiber Based Reinforced Composites for Automotive Industries 326  
     17.1 Introduction 327  
     17.2 Literature Review 328  
        17.2.1 Organic Fiber as Reinforcing Material for Braking Pads 328  
        17.2.2 Organic Filler as Reinforcing Material for Braking Pads 329  
     17.3 Experimental Procedure 330  
        17.3.1 Seashell 330  
        17.3.2 Periwinkle Shell 330  
        17.3.3 Palm Kernel Fiber 330  
        17.3.4 Banana Peels 330  
        17.3.5 Sisal Fibers 331  
     17.4 Preparation and Characterization of the Brake Pad Composites 331  
        17.4.1 Organic Fibers 332  
        17.4.2 Organic Fillers 335  
     17.5 Friction, Wear Behavior, and Mechanisms of Organic Fiber Reinforced Brake Friction Materials 338  
     17.6 Current Challenges and Future Research Direction in Brake Pad Composites 339  
     17.7 Conclusion 340  
     References 340  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz