Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Industrial Microbiology
  Großes Bild
 
Industrial Microbiology
von: David B. Wilson, Hermann Sahm, Klaus-Peter Stahmann, Mattheos Koffas
Wiley-VCH, 2019
ISBN: 9783527697298
424 Seiten, Download: 11061 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: A (einfacher Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Cover 1  
  Title Page 3  
  Copyright 6  
  Contents 9  
  Preface 19  
  Chapter 1 Historical Overview and Future Perspective 23  
     1.1 Use of Fermentation Procedures Before the Discovery of Microorganisms (Neolithic Era &equals 23  
     1.2 Investigation of Microorganisms and Beginning of Industrial Microbiology (1850 Until 1940) 29  
     1.3 Development of New Products and Procedures: Antibiotics and Other Biomolecules (From 1940) 33  
     1.4 Genetic Engineering Is Introduced into Industrial Microbiology (From Roughly 1980) 37  
     1.5 Future Perspectives: Synthetic Microbiology 40  
     References 42  
     Further Reading 43  
  Chapter 2 Bioprocess Engineering 45  
     2.1 Introduction 45  
        2.1.1 Role of Bioreactors 47  
        2.1.2 Basic Bioreactor Configurations 48  
        2.1.3 Types of Growth Media 49  
     2.2 Nonstructured Models 50  
        2.2.1 Nonstructured Growth Models 50  
           2.2.1.1 Unstructured Models 51  
           2.2.1.2 Biotechnical Processes 52  
        2.2.2 Modeling Fermentations 54  
        2.2.3 Metabolic Pathways 61  
        2.2.4 Manipulation of Metabolic Pathways 62  
        2.2.5 Future of Pathway Design 64  
     2.3 Oxygen Transport 65  
        2.3.1 Aerobic versus Anaerobic Conditions 65  
        2.3.2 kLa – Volumetric Mass Transfer Coefficient 66  
     2.4 Heat Generating Aerobic Processes 68  
     2.5 Product Recovery 71  
        2.5.1 Basics 71  
        2.5.2 In Situ Product Recovery (ISPR) 71  
     2.6 Modeling and Simulation of Reactor Behavior 73  
        2.6.1 Basic Approaches and Software 73  
        2.6.2 Numerical Simulation of Bioreactor Function 73  
        2.6.3 Contamination of Bioreactors 74  
     2.7 Scale?up 75  
     References 76  
     Further Reading 79  
  Chapter 3 Food 81  
     3.1 Fermented Foods 81  
        3.1.1 Food Preservation 81  
        3.1.2 Flavor and Texture 82  
        3.1.3 Health Benefits 82  
        3.1.4 Economic Impact 84  
     3.2 Microorganisms and Metabolism 84  
        3.2.1 Fermentation Processes 86  
        3.2.2 Starter Cultures 87  
     3.3 Yeast Fermentations – Industrial Application of Saccharomyces Species 87  
        3.3.1 Grain Fermentation for Ethanol Production – Beer 88  
        3.3.2 Grain Fermentation for CO2 Production – Bread 91  
           3.3.2.1 Yeast Preparation 91  
        3.3.3 Fruit Fermentation – Wines and Ciders 93  
     3.4 Vinegar – Incomplete Ethanol Oxidation by Acetic Acid Bacteria Such as Gluconobacter oxydans 97  
        3.4.1 Substrates: Wine, Cider, and Malt 97  
        3.4.2 Distilled (White) Vinegar 99  
        3.4.3 Balsamic and Other Specialty Vinegars 99  
     3.5 Bacterial and Mixed Fermentations – Industrial Application of Lactic Acid Bacteria, With or Without Yeast or Molds 100  
        3.5.1 Milk – Cultured Milks – Buttermilk, Yogurt, Kefir, and Cheese 100  
           3.5.1.1 Bacteriophage Contamination – Death of a Culture 103  
        3.5.2 Meats – Sausages, Fish Sauces, and Pastes 104  
        3.5.3 Vegetables – Sauerkrauts and Pickles, Olives 105  
        3.5.4 Grains and Legumes – Soy Sauce, Miso, Natto, and Tempeh 108  
        3.5.5 Cocoa and Coffee 109  
     3.6 Fungi as Food 110  
        3.6.1 Mushrooms 110  
        3.6.2 Single?Cell Protein – Fusarium venenatum 112  
     3.7 Conclusions and Outlook 113  
     References 114  
     Further Reading 114  
  Chapter 4 Technical Alcohols and Ketones 117  
     4.1 Introduction 117  
     4.2 Ethanol Synthesis by Saccharomyces cerevisiae and Clostridium autoethanogenum 119  
        4.2.1 Application 119  
        4.2.2 Metabolic Pathways and Regulation 119  
        4.2.3 Production Strains 120  
        4.2.4 Production Processes 120  
        4.2.5 Ethanol – Fuel of the Future? 122  
        4.2.6 Alternative Substrates for Ethanol Fermentation by Cellulolytic Bacteria and Clostridium autoethanogenum 122  
     4.3 1,3?Propanediol Synthesis by Escherichia coli 123  
        4.3.1 Application 123  
        4.3.2 Metabolic Pathways and Regulation 124  
        4.3.3 Production Strains 124  
        4.3.4 Production Processes 126  
     4.4 Butanol and Isobutanol Synthesis by Clostridia and Yeast 127  
        4.4.1 History of Acetone–Butanol–Ethanol (ABE) Fermentation by Clostridium acetobutylicum and C. beijerinckii 127  
        4.4.2 Application 128  
        4.4.3 Metabolic Pathways and Regulation 129  
        4.4.4 Production Strains 132  
        4.4.5 Production Processes 132  
        4.4.6 Product Toxicity 135  
     4.5 Acetone Synthesis by Solventogenic Clostridia 135  
        4.5.1 Application 135  
        4.5.2 Metabolic Pathways and Regulation 135  
        4.5.3 Production Strains 136  
        4.5.4 Production Processes 136  
     4.6 Outlook 137  
     Further Reading 137  
  Chapter 5 Organic Acids 139  
     5.1 Introduction 139  
     5.2 Citric Acid 141  
        5.2.1 Economic Impact and Applications 142  
        5.2.2 Biochemistry of Citric Acid Accumulation 142  
        5.2.3 Industrial Production by the Filamentous Fungus Aspergillus niger 144  
        5.2.4 Yarrowia lipolytica: A Yeast as an Alternative Production Platform 145  
     5.3 Lactic Acid 146  
        5.3.1 Economic Impact and Applications 146  
        5.3.2 Anaerobic Bacterial Metabolism Generating Lactic Acid 147  
        5.3.3 Lactic Acid Production by Bacteria 147  
        5.3.4 Lactic Acid Production by Yeasts 148  
     5.4 Gluconic Acid 149  
        5.4.1 Economic Impact and Applications 149  
        5.4.2 Extracellular Biotransformation of Glucose to Gluconic Acid by Aspergillus niger 150  
        5.4.3 Production of Gluconic Acid by Bacteria 151  
     5.5 Succinic Acid 151  
        5.5.1 Economic Impact and Applications 152  
        5.5.2 Pilot Plants for Anaerobic or Aerobic Microbes 152  
     5.6 Itaconic Acid 154  
        5.6.1 Economic Impact and Applications 154  
        5.6.2 Decarboxylation as a Driver in Itaconic Acid Accumulation 154  
        5.6.3 Production Process by Aspergillus terreus 154  
        5.6.4 Metabolic Engineering for Itaconic Acid Production 154  
     5.7 Downstream Options for Organic Acids 156  
     5.8 Perspectives 157  
        5.8.1 Targeting Acrylic Acid – Microbes Can Replace Chemical Process Engineering 158  
        5.8.2 Lignocellulose?Based Biorefineries 158  
     Further Reading 159  
  Chapter 6 Amino Acids 161  
     6.1 Introduction 161  
        6.1.1 Importance and Areas of Application 161  
        6.1.2 Amino Acids in the Feed Industry 162  
        6.1.3 Economic Significance 163  
     6.2 Production of Amino Acids 164  
        6.2.1 Conventional Development of Production Strains 164  
        6.2.2 Advanced Development of Production Strains 166  
     6.3 l?Glutamate Synthesis by Corynebacterium glutamicum 167  
        6.3.1 Synthesis Pathway and Regulation 167  
        6.3.2 Production Process 170  
     6.4 l?Lysine 170  
        6.4.1 Synthesis Pathway and Regulation 170  
        6.4.2 Production Strains 172  
        6.4.3 Production Process 174  
     6.5 l?Threonine Synthesis by Escherichia coli 175  
        6.5.1 Synthesis Pathway and Regulation 175  
        6.5.2 Production Strains 176  
        6.5.3 Production Process 177  
     6.6 l?Phenylalanine 177  
        6.6.1 Synthesis Pathway and Regulation 177  
        6.6.2 Production Strains 178  
        6.6.3 Production Process 179  
     6.7 Outlook 180  
     Further Reading 181  
  Chapter 7 Vitamins, Nucleotides, and Carotenoids 183  
     7.1 Application and Economic Impact 183  
     7.2 l?Ascorbic Acid (Vitamin C) 185  
        7.2.1 Biochemical Significance, Application, and Biosynthesis 185  
        7.2.2 Regioselective Oxidation with Bacteria in the Production Process 186  
     7.3 Riboflavin (Vitamin B2) 188  
        7.3.1 Significance as a Precursor for Coenzymes and as a Pigment 188  
        7.3.2 Biosynthesis by Fungi and Bacteria 189  
        7.3.3 Production by Ashbya gossypii 190  
        7.3.4 Production by Bacillus subtilis 193  
        7.3.5 Downstream Processing and Environmental Compatibility 195  
     7.4 Cobalamin (Vitamin B12) 196  
        7.4.1 Physiological Relevance 196  
        7.4.2 Biosynthesis 198  
        7.4.3 Production with Pseudomonas denitrificans 198  
     7.5 Purine Nucleotides 200  
        7.5.1 Impact as Flavor Enhancer 200  
        7.5.2 Development of Production Strains 200  
        7.5.3 Production of Inosine or Guanosine with Subsequent Phosphorylation 201  
     7.6 ??Carotene 202  
        7.6.1 Physiological Impact and Application 202  
        7.6.2 Production with Blakeslea trispora 203  
     7.7 Perspectives 203  
     Further Reading 205  
  Chapter 8 Antibiotics and Pharmacologically Active Compounds 207  
     8.1 Microbial Substances Active Against Infectious Disease Agents or Affecting Human Cells 207  
        8.1.1 Distribution and Impacts 207  
        8.1.2 Diversity of Antibiotics Produced by Bacteria and Fungi 211  
     8.2 ??Lactams 212  
        8.2.1 History, Effect, and Application 212  
        8.2.2 ??Lactam Biosynthesis 212  
        8.2.3 Penicillin Production by Penicillium chrysogenum 215  
        8.2.4 Cephalosporin Production by Acremonium chrysogenum 215  
     8.3 Lipopeptides 215  
        8.3.1 History, Effect, and Application 215  
        8.3.2 Lipopeptide Biosynthesis 216  
        8.3.3 Daptomycin Production by Streptomyces roseosporus 216  
        8.3.4 Cyclosporine Production by Tolypocladium inflatum 216  
     8.4 Macrolides 219  
        8.4.1 History, Effect, and Application 219  
        8.4.2 Macrolide Biosynthesis 219  
        8.4.3 Erythromycin Production by Saccharopolyspora erythraea 219  
     8.5 Tetracyclines 222  
        8.5.1 History, Effect, and Application 222  
        8.5.2 Tetracycline Biosynthesis 222  
        8.5.3 Tetracycline Production by Streptomyces rimosus 223  
     8.6 Aminoglycosides 223  
        8.6.1 History, Effect, and Application 223  
        8.6.2 Aminoglycoside Biosynthesis 223  
        8.6.3 Tobramycin Production by Streptomyces tenebrarius 225  
     8.7 Claviceps Alkaloids 225  
        8.7.1 History, Effect, and Application 225  
        8.7.2 Alkaloid Biosynthesis 225  
        8.7.3 Ergotamine Production by Claviceps purpurea 225  
     8.8 Perspectives 225  
        8.8.1 Antibiotic Resistance 225  
        8.8.2 New Research Model for Compound Identification 228  
        8.8.3 Future Opportunities 229  
     Further Reading 233  
  Chapter 9 Pharmaceutical Proteins 235  
     9.1 History, Main Areas of Application, and Economic Importance 235  
     9.2 Industrial Expression Systems, Cultivation and Protein Isolation, and Legal Framework 237  
        9.2.1 Development of Production Strains 237  
        9.2.2 Isolation of Pharmaceutical Proteins 243  
        9.2.3 Regulatory Requirements for the Production of Pharmaceutical Proteins 244  
     9.3 Insulins 245  
        9.3.1 Application and Structures 245  
        9.3.2 Manufacturing Processes by Escherichia coli and Saccharomyces cerevisiae 247  
           9.3.2.1 Production of a Fusion Protein in E. coli 248  
           9.3.2.2 Production of a Precursor Protein, the So?Called Mini Proinsulin with the Host Strain S. cerevisiae 250  
     9.4 Somatropin 252  
        9.4.1 Application 252  
        9.4.2 Manufacturing Process 253  
     9.5 Interferons – Application and Manufacturing 254  
     9.6 Human Granulocyte Colony?Stimulating Factor 256  
        9.6.1 Application 256  
        9.6.2 Manufacturing Process 257  
     9.7 Vaccines 257  
        9.7.1 Application 257  
        9.7.2 Manufacturing Procedure Using the Example of Gardasil™ 258  
        9.7.3 Manufacturing Process Based on the Example of a Hepatitis B Vaccine 259  
     9.8 Antibody Fragments 260  
     9.9 Enzymes 261  
     9.10 Peptides 262  
     9.11 View – Future Economic Importance 262  
     Further Reading 264  
  Chapter 10 Enzymes 265  
     10.1 Fields of Application and Economic Impacts 265  
        10.1.1 Enzymes are Biocatalysts 265  
        10.1.2 Advantages and Limitations of Using Enzymatic Versus Chemical Methods 266  
        10.1.3 Brief History of Enzyme Used for the Industrial Production of Valuable Products 267  
        10.1.4 Diverse Ways That Enzymes Are Used in Industry 268  
     10.2 Enzyme Discovery and Improvement 272  
        10.2.1 Screening for New Enzymes and Optimization of Enzymes by Protein Engineering 272  
        10.2.2 Classical Development of Production Strains 273  
        10.2.3 Genetic Engineering of Producer Strains 275  
     10.3 Production Process for Bacterial or Fungal Enzymes 277  
     10.4 Polysaccharide?Hydrolyzing Enzymes 277  
        10.4.1 Starch?Cleaving Enzymes Produced by Bacillus and Aspergillus Species 279  
        10.4.2 Cellulose?Cleaving Enzymes: A Domain of Trichoderma reesei 281  
        10.4.3 Production Strains 283  
     10.5 Enzymes Used as Cleaning Agents 285  
        10.5.1 Subtilisin?Like Protease 286  
        10.5.2 Bacillus sp. Production Strains and Production Process 287  
     10.6 Feed Supplements – Phytases 288  
        10.6.1 Fields of Applications of Phytase 289  
        10.6.2 Phytase in the Animals Intestine 289  
        10.6.3 Production of a Bacterial Phytase in Aspergillus niger 291  
     10.7 Enzymes for Chemical and Pharmaceutical Industry 293  
        10.7.1 Examples for Enzymatic Chemical Production 293  
        10.7.2 Production of (S)?Profens by Fungal Lipase 293  
     10.8 Enzymes as Highly Selective Tools for Research and Diagnostics 294  
        10.8.1 Microbial Enzymes for Analysis and Engineering of Nucleic Acids 294  
        10.8.2 Specific Enzymes for Quantitative Metabolite Assays 297  
     10.9 Perspectives 298  
        10.9.1 l?DOPA by Tyrosine Phenol Lyase 298  
        10.9.2 Activation of Alkanes 298  
        10.9.3 Enzyme Cascades 298  
     References 299  
     Further Reading 299  
  Chapter 11 Microbial Polysaccharides 301  
     11.1 Introduction 301  
     11.2 Heteropolysaccharides 304  
        11.2.1 Xanthan: A Product of the Bacterium Xanthomonas campestris 304  
           11.2.1.1 Introduction 304  
           11.2.1.2 Regulatory Status 304  
           11.2.1.3 Structure 304  
           11.2.1.4 Biosynthesis 306  
           11.2.1.5 Industrial Production of Xanthan 308  
           11.2.1.6 Physicochemical Properties 309  
           11.2.1.7 Applications 311  
        11.2.2 Sphingans: Polysaccharides from Sphingomonas sp. 313  
        11.2.3 Hyaluronic Acid: A High?Value Polysaccharide for Cosmetic Applications 315  
        11.2.4 Alginate: Alternatives to Plant?Based Products by Pseudomonas and Azotobacter sp. 316  
        11.2.5 Succinoglycan: Acidic Polysaccharide from Rhizobium sp. 316  
     11.3 Homopolysaccharides 317  
        11.3.1 ??Glucans 318  
           11.3.1.1 Pullulan 318  
           11.3.1.2 Dextran 318  
        11.3.2 ??Glucans 319  
           11.3.2.1 Linear ??glucans like cellulose and curdlan 319  
           11.3.2.2 Branched ??Glucans Like Scleroglucan and Schizophyllan 319  
        11.3.3 Fructosylpolymers like Levan 320  
     11.4 Perspectives 320  
     Further Reading 321  
  Chapter 12 Steroids 323  
     12.1 Fields of Applications and Economic Importance 323  
     12.2 Advantages of Biotransformations During Production of Steroids 325  
     12.3 Development of Production Strains and Production Processes 327  
     12.4 Applied Types of Biotransformation 329  
     12.5 Synthesis of Steroids in Organic – Aqueous Biphasic System 332  
     12.6 Side?chain Degradation of Phytosterols by Mycobacterium to Gain Steroid Intermediates 333  
     12.7 Biotransformation of Cholesterol to Gain Key Steroid Intermediates 335  
     12.8 11?Hydroxylation by Fungi During Synthesis of Corticosteroids 335  
     12.9 ?1?Dehydrogenation by Arthrobacter for the Production of Prednisolone 338  
     12.10 17?Keto Reduction by Saccharomyces in Testosterone Production 339  
     12.11 Double?Bond Isomerization of Steroids 340  
     12.12 Perspectives 341  
     References 342  
     Further Reading 343  
  Chapter 13 Bioleaching 345  
     13.1 Acidophilic Microorganisms Dissolve Metals from Sulfide Ores 345  
        13.1.1 Brief Overview on the Diversity of Acidophilic Mineral?Oxidizing Microorganisms 347  
        13.1.2 Natural and Man?Made Habitats of Mineral?oxidizing Microorganisms 347  
        13.1.3 Biological Catalysis of Metal Sulfide Oxidation 350  
        13.1.4 Importance of Biofilm Formation and Extracellular Polymeric Substances for Bioleaching by Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans 352  
     13.2 Bioleaching of Copper, Nickel, Zinc, and Cobalt 356  
        13.2.1 Economic Impact 356  
        13.2.2 Heap, Dump, or Stirred?tank Bioleaching of Copper, Nickel, Zinc, and Cobalt 359  
     13.3 Gold 364  
        13.3.1 Economic Impact 365  
        13.3.2 Unlocking Gold by Biooxidation of the Mineral Matrix 365  
     13.4 Uranium 368  
        13.4.1 Economic Impact 368  
        13.4.2 In Situ Biomining of Uranium 368  
     13.5 Perspectives 369  
        13.5.1 Urban Mining – Processing of Electronic Waste and Industrial Residues 369  
        13.5.2 Microbial Iron Reduction for Dissolution of Mineral Oxides 370  
        13.5.3 Biomining Goes Underground – In Situ Leaching as a Green Mining Technology? 370  
     References 373  
     Further Reading 373  
  Chapter 14 Wastewater Treatment Processes 375  
     14.1 Introduction 376  
        14.1.1 Historical Development of Sewage Treatment 376  
        14.1.2 Resources from Wastewater Treatment 379  
        14.1.3 Wastewater and Storm Water Drainage 380  
        14.1.4 Wastewater Characterization and Processes for Effective Wastewater Treatment 380  
        14.1.5 Suspended or Immobilized Bacteria as Biocatalysts for Effective Sewage Treatment 382  
     14.2 Biological Basics of Carbon, Nitrogen, and Phosphorus Removal from Sewage 384  
        14.2.1 Aerobic and Anaerobic Degradation of Carbon Compounds 384  
           14.2.1.1 Mass and Energy Balance 388  
        14.2.2 Fundamentals of Nitrification 390  
        14.2.3 Elimination of Nitrate by Denitrification 393  
        14.2.4 New Nitrogen Elimination Processes 393  
        14.2.5 Microbial Phosphate Elimination 394  
     14.3 Wastewater Treatment Processes 396  
        14.3.1 Typical Process Sequence in Municipal Sewage Treatment Plants 396  
        14.3.2 Activated Sludge Process 398  
        14.3.3 Trickling Filters 400  
        14.3.4 Technical Options for Denitrification 401  
        14.3.5 Biological Phosphate Elimination 403  
        14.3.6 Sewage Sludge Treatment 404  
           14.3.6.1 Aerobic and Anaerobic Sewage Sludge Treatment 404  
           14.3.6.2 Sanitation and Quality Assurance of Sewage Sludge 406  
     14.4 Advanced Wastewater Treatment 406  
        14.4.1 Elimination of Micropollutants 407  
        14.4.2 Wastewater Disinfection 407  
     14.5 Future Perspectives 408  
     References 408  
     Further Reading 410  
  Index 411  
  EULA 420  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz