Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Fundamentals of Thermodynamics and Applications - With Historical Annotations and Many Citations from Avogadro to Zermelo
  Großes Bild
 
Fundamentals of Thermodynamics and Applications - With Historical Annotations and Many Citations from Avogadro to Zermelo
von: Ingo Müller, Wolfgang H. Müller
Springer-Verlag, 2009
ISBN: 9783540746485
416 Seiten, Download: 87558 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Title Page 2  
  Preface 5  
  Contents 7  
  Prologue on ideal gases and incompressible fluids 17  
     Thermal and caloric equations of state 17  
     “mol” 18  
     On the history of the equations of state 19  
     An elementary kinetic view of the equations of state for ideal gases 20  
  Objectives of thermodynamics and its equations of balance 23  
     Fields of mechanics and thermodynamics 23  
        {\it Mass density, velocity, and temperature} 23  
        {\it History of temperature} 23  
     Equations of balance 25  
        {\it Conservation laws of thermodynamics} 25  
        {\it Generic equations of balance for closed and open systems} 25  
        {\it Generic local equation of balance in regular points} 26  
     Balance of mass 27  
        {\it Integral and local balance equations of mass} 27  
        {\it Mass balance and nozzle flow} 27  
     Balance of momentum 28  
        {\it Integral and local balance equations of momentum} 28  
        {\it Pressure} 30  
        {\it Pressure in an incompressible fluid at rest} 30  
        {\it History of pressure and pressure units} 31  
        {\it Applications of the momentum balance} 32  
     Balance of energy 42  
        {\it Kinetic energy, potential energy, and four types of internal energy} 42  
        {\it Integral and local equations of balance of energy} 45  
        {\it Potential energy} 47  
        {\it Balance of internal energy} 48  
        {\it Short form of energy balance for closed systems} 49  
        {\it First Law for reversible processes. The basis of “pdV - thermodynamics”} 50  
        {\it Enthalpy and First Law for stationary flow processes} 50  
        {\it “Adiabatic equation of state” for an ideal gas – an integral of the energy balance} 52  
        {\it Applications of the energy balance} 53  
     History of the First Law 69  
     Summary of equations of balance 71  
  Constitutive equations 72  
     On measuring constitutive functions 72  
        {\it The need for constitutive equations} 72  
        {\it Constitutive equations for viscous, heat-conducting fluids, vapors, and gas} 72  
     Determination of viscosity and thermal conductivity 74  
        {\it Shear flow between parallel plates. Newton’s law of friction} 74  
        {\it Heat conduction through a window-pane} 76  
     Measuring the state functions $p(v,T)$ and $u(v ,T)$ 78  
        {\it The need for measurements} 78  
        {\it Thermal equations of state} 78  
        {\it Caloric equation of state} 79  
        {\it Equations of state for air and superheated steam} 81  
        {\it Equations of state for liquid water} 82  
     State diagrams for fluids and vapors with a phase transition 83  
        {\it The phenomenon of a liquid-vapor phase transition} 83  
        {\it Melting and sublimation} 85  
        {\it Saturated vapor curve of water} 85  
        {\it On the anomaly of water} 88  
        {\it Wet region and ( p,v) -diagram of water} 90  
        {\it 3D phase diagram} 90  
        {\it Heat of evaporation and (h,T)–diagram of water} 91  
        {\it Applications of saturated steam} 92  
        {\it Van der Waals equation} 94  
        {\it On the history of liquefying gases and solidifying liquids} 96  
  Reversible processes and cycles. “$p$ d$V$ thermodynamics” for the calculation of thermodynamic engines 98  
     Work and heat for reversible processes 98  
     Compressor and pneumatic machine. The hot air engine 99  
        {\it Work needed for the operation of a compressor} 99  
        {\it Two-stage compressor} 101  
        {\it Pneumatic machine} 101  
        {\it Hot air engine} 102  
     Work and heat for reversible processes in ideal gases. “Iso-processes” and adiabatic processes 103  
     Cycles 104  
        {\it Efficiency in the conversion of heat to work} 104  
        {\it Efficiencies of special cycles} 105  
     Internal combustion cycles 111  
        {\it Otto cycle} 111  
        {\it Diesel cycle} 114  
        {\it On the history of the internal combustion engine} 116  
     Gas turbine 117  
        {\it Brayton process} 117  
        {\it Jet propulsion process} 118  
        {\it Turbofan engine} 119  
  Entropy 120  
     The Second Law of thermodynamics 120  
        {\it Formulation and exploitation} 120  
        {\it Summary} 126  
     Exploitation of the Second Law 128  
        {\it Integrability condition} 128  
        {\it Internal energy and entropy of a van der Waals gas and of an ideal gas} 129  
        {\it Alternatives of the Gibbs equation and its integrability conditions} 130  
        {\it Phase equilibrium. Clausius-Clapeyron equation} 132  
        {\it Phase equilibrium in a van der Waals gas} 134  
        {\it Temperature change during adiabatic throttling Example: Van der Waals gas} 135  
        {\it Available free energies} 138  
        {\it Stability conditions} 140  
        {\it Specific heat cp is singular at the critical point} 141  
     A layer of liquid heated from below – onset of convection 142  
     On the history of the Second Law 146  
  Entropy as $S=k lnW$ 149  
     Molecular interpretation of entropy 149  
     Entropy of a gas and of a polymer molecule 149  
     Entropy as a measure of disorder 153  
     Maxwell distribution 154  
     Entropy of a rubber rod 155  
     Examples for entropy and Second Law. Gas and rubber 157  
        {\it Gibbs equation and integrability condition for liquids and solids} 157  
        {\it Examples for entropic elasticity} 159  
        {\it Real gases and crystallizing rubber} 160  
        {\it Free energy of gases and rubber. (p,V)- and(P, L)-curves.} 162  
        {\it Reversible and hysteretic phase transitions} 164  
     History of the molecular interpretation of entropy 165  
  Steam engines and refrigerators 167  
     The history of the steam engine 167  
     Steam engines 169  
        {\it The (T,S)-diagram} 169  
        {\it Clausius-Rankine process. The essential role of enthalpy} 169  
        {\it Clausius-Rankine process in a (T, S)-diagram} 171  
        {\it The (h, s)-diagram} 173  
        {\it Steam flow rate and efficiency of a power station} 175  
        {\it Carnotization} 176  
        {\it Mercury-water binary vapor cycle} 177  
        {\it Combined gas-vapor cycle} 178  
     Refrigerator and heat pump 178  
        {\it Compression refrigerator} 178  
        {\it Calculation for a cold storage room} 179  
        {\it Absorption refrigerator} 180  
        {\it Refrigerants} 181  
        {\it Heat pump} 182  
  Heat Transfer 184  
     Non-Stationary Heat Conduction 184  
        {\it The heat conduction equation} 184  
        {\it Separation of variables} 184  
        {\it Examples of heat conduction} 185  
        {\it On the history of non-stationary heat conduction} 192  
     Heat Exchangers 192  
        {\it Heat transport coefficients and heat transfer coefficient} 192  
        {\it Temperature gradients in the flow direction} 194  
        {\it Temperatures along the heat exchanger} 195  
     Radiation 197  
        {\it Coefficients of spectral emission and absorption} 197  
        {\it Kirchhoff’s law} 199  
        {\it Averaged emission coefficient and averaged absorption number} 200  
        {\it Examples of thermodynamics of radiation} 203  
        {\it On the history of heat radiation} 206  
     Utilization of Solar Energy 207  
        {\it Availability} 207  
        {\it Thermosiphon} 208  
        {\it Green house} 209  
        {\it Focusing collectors. The burning glass} 211  
  Mixtures, solutions, and alloys 212  
     Chemical potentials 212  
        {\it Characterization of mixtures} 212  
        {\it Chemical potentials. Definition and relation to Gibbs free energy} 213  
        {\it Chemical potentials 214  
        {\it Measuring chemical potentials} 216  
     Quantities of mixing. Chemical potentials of ideal mixtures 217  
        {\it Quantities of mixing} 217  
        {\it Quantities of mixing of ideal gases} 219  
        {\it Ideal mixtures} 220  
        {\it Chemical potentials of ideal mixtures} 220  
     Osmosis 221  
        {\it Osmotic pressure in dilute solutions. Van’t Hoff’s law} 221  
        {\it Applications of osmosis} 223  
     Mixtures in different phases 229  
        {\it Gibbs phase rule} 229  
        {\it Degrees of freedom} 230  
     Liquid-vapor equilibrium (ideal) 231  
        {\it Ideal Raoult law} 231  
        {\it Ideal phase diagrams for binary mixtures.} 232  
        {\it Evaporation in the (p,T)-diagram} 234  
        {\it Saturation pressure decrease and boiling temperature increase} 235  
     Distillation, an application of Raoult’s law 236  
        {\it mol as a unit} 236  
        {\it Simple application of Raoult’s law} 237  
        {\it Batch distillation} 237  
        {\it Continuous distillation and the separating cascade} 240  
        {\it Rectification column} 242  
     Liquid-vapor equilibrium (real) 244  
        {\it Activity and fugacity} 244  
        {\it Raoult’s law for non-ideal mixtures} 245  
        {\it Determination of the activity coefficient} 245  
        {\it Determination of fugacity coefficients} 247  
        {\it Activity coefficient and heat of mixing. Construction of a phase diagram} 247  
        {\it Henry coefficient} 249  
     Gibbs free energy of a binary mixture in two phases 251  
        {\it Graphical determination of equilibrium states} 251  
        {\it Graphical representation of chemical potentials} 254  
        {\it Phase diagram with unrestricted miscibility} 254  
        {\it Miscibility gap in the liquid phase} 256  
     Alloys 256  
        {\it ( T , c_{1}) –diagrams} 256  
        {\it Solid solutions and the eutectic point} 259  
        {\it Gibbs phase rule for a binary alloy} 260  
     Ternary Phase Diagrams 260  
        {\it Representation} 260  
        {\it Miscibility gaps in ternary solutions} 261  
  Chemically reacting mixtures 264  
     Stoichiometry and law of mass action 264  
        {\it Stoichiometry} 264  
        {\it Application of stoichiometry. Respiratory quotient RQ} 266  
        {\it Law of mass action} 266  
        {\it Law of mass action for ideal mixtures and mixtures of ideal gases} 267  
        {\it On the history of the law of mass action} 268  
        {\it Examples for the law of mass action for ideal gases} 269  
        {\it Equilibrium in stoichiometric mixtures of ideal gases} 271  
     Heats of reaction, entropies of reaction, and absolute values of entropies 273  
        {\it The additive constants in u and s} 273  
        {\it Heats of reaction} 275  
        {\it Entropies of reaction} 276  
        {\it Le Chatelier’s principle of least constraint} 277  
     Nernst’s heat theorem. The Third Law of thermodynamics 277  
        {\it Third Law in Nernst’s formulation} 277  
        {\it Application of the Third Law. The latent heat of the transformation gray $\rightarrow$ white in tin} 278  
        {\it Third Law in PLANCK’s formulation} 279  
        {\it Absolute values of energy and entropy} 280  
     Energetic and entropic contributions to equilibrium 280  
        {\it Three contributions to the Gibbs free energy} 280  
        {\it Examples for minima of the Gibbs free energy} 282  
        {\it On the history of the Haber-Bosch synthesis} 284  
     The fuel cell 285  
        Chemical Reactions 285  
        {\it Various types of fuel cells} 286  
        {\it Thermodynamics} 287  
        {\it Effects of temperature and pressure} 289  
        {\it Power of the fuel cell} 289  
        {\it Efficiency of the fuel cell} 290  
     Thermodynamics of photosynthesis 291  
        {\it The dilemma of glucose synthesis} 291  
        {\it Balance of particle numbers} 292  
        {\it Balance of energy. Why a plant needs lots of water} 293  
        {\it Balance of entropy. Why a plant needs air} 295  
        {\it Discussion} 296  
  Moist air 298  
     Characterization of moist air 298  
        {\it Moisture content} 298  
        {\it Enthalpy of moist air} 298  
        {\it Table for moist air} 299  
        {\it The ($h_{1+x}$ , x)-diagram} 301  
     Simple processes in moist air 302  
        {\it Supply of water} 302  
        {\it Heating} 303  
        {\it Mixing} 303  
        {\it Mixing of moist air with fog} 304  
     Evaporation limit and cooling limit 304  
        {\it Mass balance and evaporation limit} 304  
        {\it Energy balance and cooling limit} 305  
     Two Instructive Examples: Sauna and Cloud Base 307  
        {\it A sauna is prepared} 307  
        {\it Cloud base} 308  
     Rules of thumb 310  
        {\it Alternative measures of moisture} 310  
        {\it Dry adiabatic temperature gradient} 311  
     Pressure of saturated vapor in the presence of air 312  
  Selected problems in thermodynamics 314  
     Droplets and bubbles 314  
        {\it Available free energy} 314  
        {\it Necessary and sufficient conditions for equilibrium} 315  
        {\it Available free energy as a function of radius} 315  
        {\it Nucleation barrier for droplets} 317  
        {\it Nucleation barrier for bubbles} 318  
        {\it Discussion} 319  
     Fog and clouds. Droplets in moist air 319  
        {\it Problem} 319  
        {\it Available free energy. Equilibrium conditions} 320  
        {\it Water vapor pressure in phase equilibrium} 321  
        {\it The form of the available free energy} 321  
        {\it Nucleation barrier and droplet radius} 324  
     Rubber balloons 325  
        {\it Pressure-radius relation} 325  
        {\it Stability of a balloon} 328  
        {\it A suggestive argument for the stability of a balloon} 330  
        {\it Equilibria between interconnected balloons} 333  
     Sound 335  
        {\it Wave equation} 335  
        {\it Solution of the wave equation, d’Alembert method} 338  
        {\it Plane harmonic waves} 339  
        {\it Plane harmonic sound waves} 340  
     Landau theory of phase transitions 342  
        {\it Free energy and load as functions of temperature and strain: Phase transitions of first and second order} 342  
        {\it Phase transitions of first order} 342  
        {\it Phase transitions of second order} 345  
        {\it Phase transitions under load} 347  
        {\it A remark on the classification of phase transitions} 347  
     Swelling and shrinking of gels 348  
        {\it Phenomenon} 348  
        {\it Gibbs free energy} 350  
        {\it Swelling and shrinking as function of temperature} 353  
  Thermodynamics of irreversible processes 356  
     Single fluids 356  
        {\it The laws of FOURIER and NAVIER-STOKES} 356  
        {\it Shear flow and heat conduction between parallel plates} 358  
        {\it Absorption and dispersion of sound} 360  
        {\it Eshelby tensor} 362  
     Mixtures of Fluids 364  
        {\it The laws of Fourier, Fick, and Navier-Stokes} 364  
        {\it Diffusion coefficient and diffusion equation} 367  
        {\it Stationary heat conduction coupled with diffusion and chemical reaction} 369  
     Flames 371  
        {\it Chapman-Jouguet equations} 371  
        {\it Detonations and flames} 373  
        {\it Equations of balance inside the flame} 374  
        {\it Dimensionless equations} 376  
        {\it Solutions} 377  
        {\it On the precarious nature of a flame} 379  
     A model for linear visco-elasticity 379  
        {\it Internal variable} 379  
        {\it Rheological equation of state} 381  
        {\it Creep and stress relaxation} 382  
        {\it Stability conditions} 384  
        {\it Irreversibility of creep} 384  
        {\it Frequency-dependent elastic modulus and the complex elastic modulus} 386  
     Shape memory alloys 387  
        {\it Phenomena and applications} 387  
        {\it A model for shape memory alloys} 391  
        {\it Entropic stabilization} 392  
        {\it Pseudoelasticity} 395  
        {\it Latent heat} 398  
        {\it Kinetic theory of shape memory} 400  
        {\it Molecular dynamics} 404  
  Name and subject index 407  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz