Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Large Eddy Simulation for Compressible Flows
  Großes Bild
 
Large Eddy Simulation for Compressible Flows
von: Eric Garnier, Nikolaus Adams, P. Sagaut
Springer-Verlag, 2009
ISBN: 9789048128198
280 Seiten, Download: 4381 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Contents 6  
  Introduction 11  
  LES Governing Equations 15  
     Preliminary Discussion 15  
     Governing Equations 16  
        Fundamental Assumptions 16  
        Conservative Formulation 17  
        Alternative Formulations 19  
     Filtering Operator 19  
        Definition 20  
           Fundamental Properties 20  
           Additional Hypothesis 22  
           Three Classical Filters for Large Eddy Simulation 22  
           Differential Interpretation of the Filters 23  
        Discrete Representation of Filters 24  
        Filtering of Discontinuities 26  
        Filter Associated to the Numerical Method 28  
        Commutation Error 30  
        Favre Filtering 30  
        Summary of the Different Type of Filters 32  
     Formulation of the Filtered Governing Equations 32  
        Enthalpy Formulation 33  
        Temperature Formulation 34  
        Pressure Formulation 34  
        Entropy Formulation 35  
        Filtered Total Energy Equations 36  
           A System for E, p, T 37  
           A System for E, p, T 38  
           A System for E, P, T 38  
           A System for E, p, T 39  
        Momentum Equations 39  
        Simplifying Assumptions 40  
           SGS Force Terms 40  
           Small Scales Incompressibility 41  
     Additional Relations for LES of Compressible Flows 43  
        Preservation of Original Symmetries 43  
        Discontinuity Jump Relations for LES 45  
           Shock Modeling and Jump Relations 45  
           Filtered Jump Relations and Associated Constrains on Subgrid Terms 46  
        Second Law of Thermodynamics 47  
     Model Construction 48  
        Basic Hypothesis 48  
        Modeling Strategies 49  
  Compressible Turbulence Dynamics 50  
     Scope and Content of This Chapter 50  
     Kovasznay Decomposition of Turbulent Fluctuations 51  
        Kovasznay's Linear Decomposition 51  
        Weakly Nonlinear Kovasznay Decomposition 54  
     Statistical Description of Compressible Turbulence 55  
     Shock-Turbulence Interaction 57  
        Introduction to the Linear Interaction Approximation Theory 57  
        Vortical Turbulence-Shock Interaction 58  
        Mixed-Mode Turbulence-Shock Interaction 66  
           Influence of the Upstream Entropy Fluctuations 67  
           Influence of the Upstream Acoustic Fluctuations 71  
        Consequences for Subgrid Modeling 71  
     Different Regimes of Isotropic Compressible Turbulence 73  
        Quasi-Isentropic-Turbulence Regime 74  
        Nonlinear Subsonic Regime 80  
           Conditions for Occurrence of Shocklets 80  
           Energy Budget and Shocklet Influence 80  
           Enstrophy Budget and Shocklet Influence 81  
        Supersonic Regime 83  
        Consequences for Subgrid Modeling 84  
  Functional Modeling 86  
     Basis of Functional Modeling 86  
        Phenomenology of Scale Interactions 86  
        Basic Functional Modeling Hypothesis 88  
     SGS Viscosity 88  
        The Boussinesq Hypothesis 88  
        Smagorinsky Model 90  
        Structure Function Model 91  
        Mixed Scale Model 91  
     Isotropic Tensor Modeling 92  
     SGS Heat Flux 93  
     Modeling of the Subgrid Turbulent Dissipation Rate 94  
     Improvement of SGS models 94  
        Structural Sensors and Selective Models 94  
        Accentuation Technique and Filtered Models 96  
        High-Pass Filtered Eddy Viscosity 97  
        Wall-Adapting Local Eddy-Viscosity Model 97  
        Dynamic Procedure 98  
           Computation of the Deviatoric SGS Tensor 98  
           Computation of the Isotropic Part of the SGS Tensor 101  
           Computation of the Dynamic Prandtl Number 101  
        Implicit Diffusion and the Implicit LES Concept 102  
  Explicit Structural Modeling 103  
     Motivation of Structural Modeling 103  
     Models Based on Deconvolution 105  
        Scale-Similarity Model 108  
        Approximate Deconvolution Model 111  
        Tensor-Diffusivity Model 113  
     Regularization Techniques 113  
        Eddy-Viscosity Regularization 114  
        Relaxation Regularization 117  
        Regularization by Explicit Filtering 119  
     Multi-Scale Modeling of Subgrid-Scales 121  
        Multi-Level Approaches 121  
        Stretched-Vortex Model 124  
        Variational Multi-Scale Model 125  
  Relation Between SGS Model and Numerical Discretization 127  
     Systematic Procedures for Nonlinear Error Analysis 127  
        Error Sources 127  
        Modified Differential Equation Analysis 129  
        Modified Differential Equation Analysis in Spectral Space 134  
     Implicit LES Approaches Based on Linear and Nonlinear Discretization Schemes 137  
        The Volume Balance Procedure of Schumamm 137  
        The Kawamura-Kuwahara Scheme 138  
        The Piecewise-Parabolic Method 139  
        The Flux-Corrected-Transport Method 140  
        The MPDATA Method 144  
        The Optimum Finite-Volume Scheme 146  
     Implicit LES by Adaptive Local Deconvolution 148  
        Fundamental Concept of ALDM 148  
        ALDM for the Incompressible Navier-Stokes Equations 151  
        ALDM for the Compressible Navier-Stokes Equations 156  
  Boundary Conditions for Large-Eddy Simulation of Compressible Flows 162  
     Introduction 162  
     Wall Modeling for Compressible LES 163  
        Statement of the Problem 163  
        Wall Boundary Conditions in the Kovasznay Decomposition Framework: an Insight 163  
        Turbulent Boundary Layer: Vorticity and Temperature Fields 166  
           Turbulent Boundary Layer Vortical Dynamics: a Brief Reminder 166  
           Turbulent Boundary Layer: Mean Flow Features 167  
        Turbulent Boundary Layer: Acoustic Field 170  
           A First Insight: Surface Pressure Fluctuations 170  
           Production of Pressure Fluctuations by the Vorticity Field 172  
           Attenuation of Acoustic Modes by Vorticity and Entropy Modes 175  
        Consequences for the Development of Compressible Wall Models 176  
        Extension of Existing Wall Models for Incompressible Flows 177  
           Algebraic Two-Layer Wall Models 177  
           Thin-Boundary Layer Equations Based Models 178  
     Unsteady Turbulent Inflow Conditions for Compressible LES 179  
        Fundamentals 179  
        Precursor Simulation: Advantages and Drawbacks 181  
        Extraction-Rescaling Techniques 182  
        Synthetic-Turbulence-Based Models 186  
  Subsonic Applications with Compressibility Effects 192  
     Homogeneous Turbulence 192  
        Context 192  
        A Few Realizations 193  
        Influence of the Numerical Method 194  
        SGS Modeling 197  
     Channel Flow 198  
        Context 198  
        A Few Realizations 198  
        Influence of the Numerical Method 199  
        Influence of the SGS Model 201  
     Mixing Layer 202  
        Context 202  
        A Few Realizations 202  
        Influence of the Numerical Method 203  
        Influence of the SGS Model 204  
     Boundary-Layer Flow 205  
        Context 205  
        A Few Realizations 205  
     Jets 207  
        Context 207  
        A Few Realizations 208  
        Influence of the Numerical Method 209  
        Influence of the SGS Model 211  
        Physical Analysis 212  
     Flows over Cavities 213  
        Context 213  
        A Few Realizations 213  
        Influence of the Numerical Method 214  
        Influence of the SGS Model 215  
        Physical Analysis 215  
  Supersonic Applications 217  
     Homogeneous Turbulence 217  
     Channel Flow 218  
        Context 218  
        A Few Realizations 218  
        Influence of the Numerical Method 219  
        Influence of the Grid Resolution 220  
        Influence of the SGS Model 221  
     Boundary Layers 221  
        Context 221  
        A Few Realizations 222  
        Influence of the Numerical Method 222  
        Influence of the Grid Resolution 223  
        SGS Modeling 225  
     Jets 226  
        Context 226  
        A Few Realizations 226  
        Influence of the Numerical Method 227  
        Influence of the SGS Model 227  
        Physical Analysis 227  
  Supersonic Applications with Shock-Turbulence Interaction 229  
     Shock-Interaction with Homogeneous Turbulence 230  
        Phenomenology of Shock-Interaction with Homogeneous Turbulence 230  
        LES of Shock-Interaction with Homogeneous Turbulence 234  
     Shock-Turbulence Interaction in Jets 236  
        Phenomenology of Shock-Turbulence Interaction in Jets 236  
        LES of Shock-Turbulence Interaction in Jets 237  
     Shock-Turbulent-Boundary-Layer Interaction 239  
        Phenomenology of Shock-Turbulent-Boundary-Layer Interaction 239  
        LES of Compression-Ramp Configurations 243  
           Normal Shock Configurations 250  
           Impinging Shock Configurations 254  
  References 260  
  Index 277  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz