Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Plant Electrophysiology - Signaling and Responses
  Großes Bild
 
Plant Electrophysiology - Signaling and Responses
von: Alexander Volkov
Springer-Verlag, 2012
ISBN: 9783642291104
378 Seiten, Download: 8515 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 4  
  References 6  
  Contents 7  
  Contributors 9  
  1 Morphing Structures in the Venus Flytrap 12  
     Abstract 12  
     1.1…Introduction 12  
     1.2…Anatomy and Mechanics of the Trap 15  
     1.3…The Hydroelastic Curvature Model of Venus Flytrap 16  
     1.4…Comparison with Experiment 21  
     1.5…Interrogating Consecutive Stages of Trap Closing 23  
     1.6…Electrical Memory in Venus Flytrap 28  
     1.7…Complete Hunting Cycle of the Venus Flytrap 34  
     Acknowledgment 40  
     References 40  
  2 The Effect of Electrical Signals on Photosynthesis and Respiration 43  
     Abstract 43  
     2.1…Introduction 44  
     2.2…Methodology and Experimental Setup 45  
        2.2.1 Gas Exchange Measurements 45  
        2.2.2 Chlorophyll Fluorescence Measurements 47  
        2.2.3 Polarographic O2 Measurements 51  
     2.3…Effect of APs on Photosynthesis 51  
        2.3.1 Chara cells 51  
        2.3.2 Carnivorous Plant Venus Flytrap (D. muscipula) 53  
        2.3.3 Mimosa Pudica 56  
        2.3.4 Other Plant Species 57  
     2.4…Effect of VPs on Photosynthesis 59  
        2.4.1 Mimosa Pudica 60  
        2.4.2 Other Plant Species 61  
     2.5…Possible Mechanism Underlying Photosynthetic Limitation upon Impact of Electrical Signals 63  
     2.6…Effect of Electrical Signalling on Respiration 65  
     2.7…Conclusions 66  
     Acknowledgments 67  
     References 67  
  3 Mathematical Modeling, Dynamics Analysis and Control of Carnivorous Plants 73  
     Abstract 73  
     3.1…Introduction 74  
     3.2…Mathematical Modeling 78  
        3.2.1 Double-Trigger Process 79  
        3.2.2 Water Kinetics 80  
           3.2.2.1 Capture Process: (From the Open to the Semi-Closed State) 83  
           3.2.2.2 Release Process: (From the Semi-Closed to the Open State) 84  
           3.2.2.3 Sealing Process: (From the Semi-Closed to the Closed State) 86  
           3.2.2.4 Reopening Process: (From the Fully Closed to the Open State) 86  
        3.2.3 Summary of Model 87  
     3.3…Flytrap Robot 88  
     3.4…Conclusions 92  
     References 92  
  4 The Telegraph Plant: Codariocalyx motorius (Formerly Also Desmodium gyrans) 94  
     Abstract 94  
     4.1…Introduction 95  
     4.2…Anatomy and Physiology of the Codariocalyx Pulvinus 97  
        4.2.1 Pulvinus Shape and Bending 98  
        4.2.2 Pulvinus Curvature and Water Transport 100  
        4.2.3 Pulvinus Water Transport 100  
     4.3…Codariocalyx: Experiments on Leaflet Movements 102  
        4.3.1 Background: J.C. Bose 103  
        4.3.2 Leaflet Movements and Temperature 104  
        4.3.3 Leaflet Movements and Mechanical Load 104  
        4.3.4 Leaf Movements and Light 105  
     4.4…Codariocalyx Experiments: Contributions from Electro-Physiology and Biochemistry 107  
        4.4.1 Microelectrode Electrophysiology 107  
        4.4.2 Ca2+ Regulation in Plant Cells 108  
        4.4.3 Ca2+ and the Phosphatidyl Inositol Signalling Chain 109  
     4.5…Codariocalyx Experiments: Contributions from Electromagnetic Perturbations of Rhythmic Leaflet Movements 111  
        4.5.1 Interlude: Oscillations and Singularities 111  
        4.5.2 Applications of Electric Currents to Pulvinus 113  
        4.5.3 Static Magnetic Fields 115  
     4.6…The ‘‘Heart of the Matter’’: Modelling the Pulvinus Tissue 116  
        4.6.1 Diffusion Coupling 117  
        4.6.2 Modelling Ca2+ Oscillations Applied to Leaflet Oscillations 118  
        4.6.3 From Concentration Variations to Movements 119  
     4.7…Discussion 119  
        4.7.1 Experimental 122  
        4.7.2 Experimental: Electrophysiology 123  
        4.7.3 Systems Approach and Modelling 124  
     References 126  
  5 Regulatory Mechanism of Plant Nyctinastic Movement: An Ion Channel-Related Plant Behavior 133  
     Abstract 133  
     5.1…Ion Channel-Related Regulatory Mechanism on Plant Nyctinastic Movement 133  
     5.2…Chemical Studies on Nyctinastic Leaf Movement 137  
        Leaf Opening and Closing Substances in Nyctinastic Plants 139  
        Bioorganic Studies of Nyctinasty Using Functionalized Leaf Movement Factors as Molecular Probes: Fluorescence Studies on Nyctinasty 139  
        Cell-Shrinking in the Protoplast of Motor Cell in S. saman 143  
        Potassium Fluxes in Motor Cell Protoplast in S. saman 144  
        Differences Between Jasmonic Acid Glycocide and Jasmonic Acid Signaling 145  
     References 146  
  6 Signal Transduction in Plant--Insect Interactions: From Membrane Potential Variations to Metabolomics 151  
     Abstract 151  
     6.1…Introduction 152  
     6.2…Characteristics of Electric Signals During Insect Herbivory 152  
        6.2.1 Action Potentials 152  
        6.2.2 Variation Potentials 153  
     6.3…VPs are a Common Events in Plant--Biotroph Interactions 154  
     6.4…Herbivory-Induced VPs are Triggered by Calcium Ions 155  
        6.4.1 Herbivory Versus Mechanical Wounding 156  
     6.5…Role of Herbivore’s OS and Their Elicitors on Early Electric Signaling 157  
        6.5.1 Herbivore-Associated Elicitors 158  
        6.5.2 Alamethicin, HAE, and OS Exhibit Ion Channel Forming Activities 159  
     6.6…Electric Signals Trigger Cascade of Events Leading to Gene Expression 160  
     6.7…Proteomic Responses to Herbivory 167  
     6.8…Electrical Signal Ultimate Target: The Induction of Metabolic Responses 170  
     6.9…Concluding Remarks 174  
     References 174  
  7 Phytosensors and Phytoactuators 181  
     Abstract 181  
     7.1…Introduction 181  
     7.2…Host Tropism: Insect-Induced Electrochemical Signals in Plants 185  
     7.3…Phototropism and Heliotropism: Molecular Recognition of the Direction of Light by Plants 185  
     7.4…Thigmotropism: Mechanosensation in Plants 189  
        7.4.1 Mechanics of Petiole Movement 196  
     7.5…Photoperiodism and Time Sensing: Biological Clock 198  
        7.5.1 Circadian Rhythms in Electrical Circuits of Clivia miniata 198  
        7.5.2 Circadian Rhythms in Electrical Circuits of Aloe vera and Mimosa pudica 203  
     7.6…Plants as Phytosensors for Monitoring Atmospheric Electrochemistry: Acid Rain 204  
     7.7…Chemiotropism: Electrical Signals Induced by Pesticides and Uncouplers 205  
     7.8…Gravitropism in Plants 207  
     7.9…Conclusion 208  
     Acknowledgement 209  
     References 209  
  8 Generation, Transmission, and Physiological Effects of Electrical Signals in Plants 215  
     Abstract 215  
     8.1…Introduction 215  
     8.2…Generation of Electrical Signals 217  
     8.3…Transmission of Electrical Messages 217  
        8.3.1 Types of Signals 218  
        8.3.2 Means of Signal Transmission 219  
        8.3.3 The Aphid Technique as a Tool for Measuring Electrical Signals in the Phloem 220  
        8.3.4 Electrical Properties of the Phloem 222  
     8.4…Physiological Effects of Electrical Signals 224  
        8.4.1 Regulation of Rapid Leaf Movements 224  
        8.4.2 Electrical Signaling and its Impact on Phloem Transport 224  
        8.4.3 The Role of Electrical Signals in Root-to-Shoot Communication of Water-Stressed Plants 226  
        8.4.4 The Role of Electrical Signalling During Fertilization 227  
        8.4.5 The Role of Electrical Signalling in the Regulation of Photosynthesis 228  
        8.4.6 Effects of Electrical Signals on Gene Expression 231  
     8.5…Long-Distance Electrical Signaling in Woody Plants 231  
        8.5.1 Membrane Potential, Electrical Signals and Growth of Willow Roots 232  
        8.5.2 Electrical Properties of Wood-Producing Cells 232  
     8.6…Conclusion 234  
     References 235  
  9 The Role of PlasmodesmataPlasmodesmata in the Electrotonic Transmission of Action PotentialAction Potentialelectrotonic transmissions 241  
     Abstract 241  
     9.1…Introduction 241  
     9.2…The Structure of Plasmodesmata 242  
     9.3…The Symplasmsymplasm as a Transport Pathway 242  
        9.3.1 Evidence for Intercellular Transportintercellular transport: Tracers and Fluorescent Dyes 243  
        9.3.2 Evidence for Intercellular Transport: Electrophysiology 243  
        9.3.3 Plasmodesmata as a Route for Intercellular Conduction of Electric Current 244  
     9.4…The Transmission of Action Potentials in Plants 247  
        9.4.1 Can Transmission of the Action Potential Occur via Excitation of the Plasmodesmal Plasma Membrane? 247  
        9.4.2 Can the Local External Current Generated by an Action Potential in One Cell Produce a Depolarization in the Neighboring Cell Sufficient to Trigger a Separate Action Potential? 248  
        9.4.3 Are Chemicals Involved in Intercellular Transmission of Action Potentials? 249  
        9.4.4 Is Propagation from Cell-to-Cell Electrotonic due to Flow of Current Between Cells via Plasmodesmata in the Absence of Excitation of the Plasma Membrane Within the Plasmodesmal Pore? 250  
     9.5…Conclusions 251  
     References 252  
  10 Moon and Cosmos: Plant Growth and Plant Bioelectricity 256  
     Abstract 256  
     10.1…Introduction 257  
     10.2…The Early Work of Harold Saxton Burr 259  
     10.3…Methodology 261  
     10.4…Bioelectricity in the Context of Lunar Parameters 263  
        10.4.1 Daily Oscillations of EPD 263  
        10.4.2 Monthly Oscillations of EPD 269  
        10.4.3 Annual Oscillations of EPD 272  
     10.5…Relationship of Bioelectric Potential and Solute Flow 273  
        10.5.1 Solute Flow in Secondary Xylem 273  
        10.5.2 Solute Flow in Phloem 276  
     10.6…A Moon-Generated Rhythm that May Initiate Bioelectric Impulses 276  
     10.7…Other Possible Regulators of Bioelectrical Patterns 278  
     10.8…Discussion 281  
     Acknowledgments 283  
     References 283  
  11 Biosystems Analysis of Plant Development Concerning Photoperiodic Flower Induction by Hydro-Electrochemicalelectrochemical Signal Transduction 288  
     Abstract 288  
     11.1…Introduction: Photoperiodic Flower Induction 289  
     11.2…A Systems Biological Analysis of Development in (the) Higher Plants C. rubrum and C. murale 290  
     11.3…The Model System Chenopodium: Induction of Flowering from Physiology to Molecular Biology 292  
     11.4…Electrophysiology and Plant Behaviour 293  
     11.5…Circadian Rhythms as Metabolic Bases for Hydro-Electrochemicalelectrochemical Signal Transduction 294  
     11.6…Hydraulic-Electrochemicalelectrochemical Oscillations as Integrators of Cellular and Organismic Activity 297  
     11.7…Local Hydraulic Signalling: The Shoot Apex in Transition 299  
     11.8…Summary and Perspectives: Electrophysiology and Primary Meristems 303  
     References 304  
  12 Actin, Myosin VIII and ABP1 as Central Organizers of Auxin-Secreting Synapses 309  
     Abstract 309  
     12.1…Secretion of Auxin at Plant Synapses in Cells of Transition Zone 309  
     12.2…Secretion of Auxin is Linked to Polar Transport of Calcium 310  
        Box 1: Features of the PAT Implicating its Synaptic Secretory ModeBox 1: Features of the PAT Implicating its Synaptic Secretory Mode 311  
     12.3…Plant Synapses are Organized by F-actin, Endocytosis, and Endocytic Vesicular Recycling 312  
     12.4…Myosin VIII as Endocytic Plant Myosin 313  
     12.5…PIN Polarity is Dependent on Plasma Membrane: Cell Wall and Cell-to-Cell Adhesions 313  
     12.6…Plasmodesmata as Electrical Synapses 314  
     12.7…ABP1 as Auxin Receptor for Electrical Responses 314  
     12.8…ABP1 as Auxin Receptor for Endocytosis Feeding into Synaptic Organelle TGN/EE 315  
     12.9…Evolution of Plant Synapses: From ABP1 to Synaptic Endocytosis and Vesicle Recycling 315  
     12.10…Evolution of Plant Synapses: Expansion of Synaptic PINs During Plant Evolution 316  
     12.11…Are Fungal Infections Related to the Opposite (Shootward) Polarity of PIN2? 317  
     12.12…Did ABP1 Activity Result in Formation of the Transition Zone? 317  
     12.13…Plant Synaptic Activity Emerge as Elusive Flux Sensor for the Polar Transport of Auxin 318  
     12.14…Importance of Active Plant Synapses in the Transition Zone for Tropisms and Organogenesis: From Ionic and Electric Oscillations Towards Gene Expression Oscillations 319  
     12.15…Conclusion 320  
     References 321  
  13 Ion Currents Associated with Membrane Receptors 328  
     Abstract 328  
     13.1…Introduction 328  
     13.2…Role of Electrical Signals in Plant Development 330  
     13.3…Ligand-Binding Receptors 330  
        13.3.1 Types of Membrane Bound Receptors 330  
     13.4…Small Signaling Peptides 331  
        13.4.1 Legume-Rhizobium Symbiosis 332  
        13.4.2 Pollen Tube Growth and Guidance 333  
        13.4.3 Natriuretic Peptide and Salt Stress 334  
        13.4.4 Pathogen and Herbivory Recognition 335  
        13.4.5 Specific Signaling Molecule Perception: Two Case Studies, Systemin and Flagellin 336  
     13.5…Conclusion 338  
     References 339  
  14 Characterisation of Root Plasma Membrane Ca2+-Permeable Cation Channels: Techniques and Basic Concepts 343  
     Abstract 343  
     14.1…Introduction 343  
     14.2…Cation Channels in Plants 344  
     14.3…What You Have to Know Before Starting Measurement 347  
        14.3.1 Cation Channels Catalyse Ca2+ Influx (not Efflux) 347  
        14.3.2 Isolation of Ca2+ Conductance from the Total Plasma Membrane Conductance 348  
        14.3.3 Pharmacological Analysis of Ca2+-Permeable Channels 350  
        14.3.4 Different Types of Root Ca2+-Permeable Cation Channels and Their Current--Voltage Relationships 350  
     14.4…Electrophysiological Techniques for Studying Root Ca2+-Permeable Channels 355  
        14.4.1 Measurement of Field-Potentials 355  
        14.4.2 Extracellular Ion-Selective Microelectrodes 356  
        14.4.3 Intracellular Techniques: Measurements of Membrane Potential with Single Sharp Microelectrode 358  
        14.4.4 Intracellular Techniques: Two- and One-Microelectrode Voltage-Clamp 359  
        14.4.5 Intracellular Techniques: Patch Clamp 360  
           14.4.5.1 Protoplasts 360  
           14.4.5.2 Patch-Clamp Pipettes 362  
           14.4.5.3 Patch-Clamp Set-Up and Configurations 364  
           14.4.5.4 Patch Clamp and Root Ca2+-Permeable Cation Channels 366  
           14.4.5.5 Disadvantage of Patch-Clamp Technique 366  
        14.4.6 Ca2+ Imaging and Aequorin Luminometry 367  
     14.5…Conclusions and Perspectives 369  
     References 369  
  Subject Index 374  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz