Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Innovation in Electric Arc Furnaces - Scientific Basis for Selection
  Großes Bild
 
Innovation in Electric Arc Furnaces - Scientific Basis for Selection
von: Yuri N. Toulouevski, Ilyaz Y. Zinurov
Springer-Verlag, 2009
ISBN: 9783642038020
267 Seiten, Download: 3937 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 5  
  Contents 6  
  Introduction 12  
  1 Modern Steelmaking in Electric Arc Furnaces: History and Prospects for Development 16  
     1.1 General Requirements for Steelmaking Units 16  
        1.1.1 Process Requirements 16  
        1.1.2 Economic Requirements 17  
        1.1.3 Environmental and Health and Safety Requirements 20  
     1.2 High-Power Furnaces: Issues of Power Engineering 21  
        1.2.1 Maximum Productivity as the Key Economic Requirement to EAF 21  
        1.2.2 Increasing Power of EAF Transformers 22  
        1.2.3 Specifics of Furnace Electrical Circuit 23  
        1.2.4 Optimum Electrical Mode of the Heat 26  
        1.2.5 DC Furnaces 28  
        1.2.6 Problems of Energy Supply 28  
     1.3 The Most Important Energy and Technology Innovations 29  
        1.3.1 Intensive Use of Oxygen, Carbon, and Chemical Heat 29  
        1.3.2 Foamed Slag Method 30  
        1.3.3 Furnace Operation with Hot Heel 31  
        1.3.4 Use of Hot Metal and Reduced Iron 32  
        1.3.5 Single Scrap Charging 32  
        1.3.6 Post-combustion of CO Above the Bath 33  
     1.4 Outlook 35  
        1.4.1 World Steelmaking and Mini-mills 35  
        1.4.2 The Furnaces of a New Generation 35  
        1.4.3 Consteel Process 37  
     References 38  
  2 Electric Arc Furnace as Thermoenergetical Unit 39  
     2.1 Thermal Performance of Furnace: Terminology and Designations 39  
     2.2 External and Internal Sources of Thermal Energy: Useful Heat 41  
     2.3 Factors Limiting the Power of External Sources 42  
     2.4 Key Role of Heat Transfer Processes 43  
     Reference 44  
  3 The Fundamental Laws and Calculating Formulae of Heat Transfer Processes 45  
     3.1 Three Ways of Heat Transfer: General Concepts 45  
     3.2 Conduction Heat Transfer 46  
        3.2.1 Fourier--s Law. Flat Uniform Wall. Electrical--Thermal Analogy 46  
        3.2.2 Coefficient of Thermal Conductivity 49  
        3.2.3 Multi-layer Flat Wall 52  
        3.2.4 Contact Thermal Resistance 53  
        3.2.5 Uniform Cylindrical Wall 54  
        3.2.6 Multi-layer Cylindrical Wall 55  
        3.2.7 Simplifying of Formulae for Calculation of Cylindrical Walls 56  
        3.2.8 Bodies of Complex Shape: Concept of Numerical Methods of Calculating Stationary and Non-stationary Conduction Heat Transfer 57  
     3.3 Convective Heat Exchange 60  
        3.3.1 Newtons Law: Coefficient of Heat Transfer 61  
        3.3.2 Two Modes of Fluid Motion 61  
        3.3.3 Boundary Layer 62  
        3.3.4 Free (Natural) Convection 63  
        3.3.5 Convective Heat Transfer at Forced Motion 64  
        3.3.6 Heat Transfer Between Two Fluid Flows Through Dividing Wall 66  
     3.4 Heat Radiation and Radiant Heat Exchange 70  
        3.4.1 General Concepts 70  
        3.4.2 Stefan--Boltzmann Law 71  
        3.4.3 Heat Radiation of Gases 74  
        3.4.4 Heat Exchange Between Parallel Surfaces in Transparent Medium: Effect of Screens 75  
        3.4.5 Heat Exchange Between the Body and Its Envelope: Transparent Medium 76  
        3.4.6 Heat Exchange Between the Emitting Gas and the Envelope 77  
  4 Energy (Heat) Balances of Furnace 79  
     4.1 General Concepts 79  
     4.2 Heat Balances of Different Zones of the Furnace 80  
     4.3 Example of Heat Balance in Modern Furnace 82  
     4.4 Analysis of Separate Items of Balance Equations 83  
        4.4.1 Output Items of Balance 84  
        4.4.2 Input Items of Balance 86  
     4.5 Chemical Energy Determination Methods 87  
        4.5.1 Utilization of Material Balance Data 87  
        4.5.2 About the So-Called ''Energy Equivalent'' of Oxygen 88  
        4.5.3 Calculation of Thermal Effects of Chemical Reactions by Method of Total Enthalpies 89  
     References 94  
  5 Energy Efficiency Criteria of EAFs 95  
     5.1 Preliminary Considerations 95  
     5.2 Common Energy Efficiency Coefficient of EAF and Its Deficiencies 97  
     5.3 Specific Coefficients for Estimation of Energy Efficiency of Separate Energy Sources and EAF as a Whole 98  
     5.4 Determining Specific Coefficients 101  
        5.4.1 Electrical Energy Efficiency Coefficient 0 EL 102  
        5.4.2 Fuel Energy Efficiency Coefficient of Oxy-gas Burners 0 NG 103  
        5.4.3 Energy Efficiency Coefficient of Coke Charged Along with Scrap 104  
        5.4.4 Determining the Specific Coefficients by the Method of Inverse Heat Balances 105  
     5.5 Tasks of Practical Uses of Specific Coefficients 105  
     References 106  
  6 Preheating of Scrap by Burners and Off-Gases 107  
     6.1 Expediency of Heating 107  
     6.2 Consumptions of Useful Heat for Scrap Heating, Scrap Melting, and Heating of the Melt 108  
     6.3 High-Temperature Heating of Scrap 109  
        6.3.1 Calculation of Potential of Electrical Energy Savings 109  
        6.3.2 Sample of Realization: Process BBC--Brusa 110  
     6.4 Specifics of Furnace Scrap Hampering Its Heating 111  
     6.5 Processes of Heating, Limiting Factors, Heat Transfer 112  
        6.5.1 Two Basic Methods of Heating 112  
        6.5.2 Heating a Scrap Pile in a Large-Capacity Container 113  
        6.5.3 Heating on Conveyor 116  
     6.6 Devices for Heating of Scrap: Examples 119  
        6.6.1 Heating in Charging Baskets 119  
        6.6.2 DC Arc Furnace Danarc Plus 122  
        6.6.3 Shaft Furnaces 124  
        6.6.4 Twin-Shell Steelmelting Units 125  
     References 127  
  7 Replacement of Electric Arcs with Burners 128  
     7.1 Attempts for Complete Replacement 128  
     7.2 Potentialities of Existing Burners: Heat Transfer, Limiting Factors 130  
     7.3 High-Power Rotary Burners (HPR-Burners) 132  
        7.3.1 Fundamental Features 133  
        7.3.2 Two-Stage Heat with HPR-Burners 133  
     7.4 Industrial Trials of HPR-Burners 135  
        7.4.1 Slag Door Burners: Effectiveness of Flame Direction Changes 135  
        7.4.2 Two-Stage Process with a Door Burner in 6-ton Furnaces 137  
        7.4.3 Two-Stage Process with Roof Burners in 100-ton and 200-ton EAFs 140  
     7.5 Oriel and Sidewall HPR-Burners 144  
     7.6 Fuel Arc Furnace (FAF) 148  
     7.7 Economy of Replacement of Electrical Energy with Fuel 150  
     References 152  
  8 Basic PhysicalChemical Processes in Liquid Bath: Process Mechanisms 154  
     8.1 Interaction of Oxygen Jets with the Bath: General Concepts 154  
     8.2 Oxidation of Carbon 155  
     8.3 Melting of Scrap 157  
     8.4 Heating of the Bath 159  
  9 Bath Stirring and Splashing During Oxygen Blowing 161  
     9.1 Stirring Intensity: Methods and Results of Measurement 161  
     9.2 Mechanisms of Bath Stirring 162  
        9.2.1 Stirring Through Circulation and Pulsation 162  
        9.2.2 Stirring by Oxygen Jets and CO Bubbles 163  
     9.3 Factors Limiting Intensity of Bath Oxygen Blowing in Electric Arc Furnaces 164  
        9.3.1 Iron Oxidation: Effect of Stirring 164  
        9.3.2 Bath Splashing 166  
     9.4 Oxygen Jets as a Key to Controlling Processes in the Bath 168  
     References 169  
  10 Jet Streams: Fundamental Laws and Calculation Formulae 170  
     10.1 Jet Momentum 170  
     10.2 Flooded Free Turbulent Jet: Formation Mechanism and Basic Principles 171  
     10.3 Subsonic Jets: Cylindrical and Tapered Nozzles 173  
     10.4 Supersonic Jets and Nozzles: Operation Modes 176  
     10.5 Simplified Formulae for Calculations of High-Velocity Oxygen Jets and Supersonic Nozzles 178  
        10.5.1 A Limiting Value of Jets' Velocity 180  
     10.6 Long Range of Jets 181  
     Reference 181  
  11 Devices for Blowing of Oxygen and Carbon into the Bath 182  
     11.1 Blowing by Consumable Pipes Submerged into Melt and by Mobile Water-Cooled Tuyeres 182  
        11.1.1 Manually Operated Blowing Through Consumable Pipes 183  
        11.1.2 BSE Manipulator 183  
        11.1.3 Mobile Water-Cooled Tuyeres 185  
     11.2 Jet Modules: Design, Operating Modes, Reliability 187  
        11.2.1 Increase in Oxygen Jets Long Range: Coherent Jets 189  
        11.2.2 Effectiveness of Use of Oxygen, Carbon, and Natural Gas in the Modules 192  
     11.3 Blowing by Tuyeres Installed in the Bottom Lining 194  
        11.3.1 Converter-Type Non-water-Cooled Tuyeres 194  
        11.3.2 Tuyeres Cooled by Evaporation of Atomized Water 195  
        11.3.3 Explosion-Proof Highly Durable Water-Cooled Tuyeres for Deep Blowing 198  
     References 202  
  12 Water-Cooled Furnace Elements 203  
     12.1 Preliminary Considerations 203  
     12.2 Thermal Performance of Elements: Basic Laws 203  
     12.3 Principles of Calculation and Design of Water-Cooled Elements 207  
        12.3.1 Determining of Heat Flux Rates 207  
        12.3.2 Minimum Necessary Water Flow Rate 209  
        12.3.3 Critical Zone of the Element 210  
        12.3.4 Temperature of Water-Cooled Surfaces 210  
        12.3.5 Temperature of External Surfaces 212  
        12.3.6 General Diagram of Element Calculation 214  
        12.3.7 Hydraulic Resistance of Elements 214  
     12.4 Examples of Calculation Analysis of Thermal Performance of Elements 217  
        12.4.1 Mobile Oxygen Tuyere 217  
           12.4.1.0 Input Data 217  
           12.4.1.0 Calculation of Basic Parameters of Thermal Performance of Tuyere 218  
        12.4.2 Elements with Pipes Cast into Copper Body and with Channels 219  
           12.4.2.0 Input Data 220  
           12.4.2.0 Calculation of the Basic Parameters of Thermal Performance of the Element 220  
        12.4.3 Jet Cooling of the Elements 222  
        12.4.4 Oxygen Tuyere for Deep Blowing of the Bath 223  
           12.4.4.0 Calculation of Basic Parameters of Thermal Performance of the Tuyere 224  
     References 225  
  13 Principles of Automation of Heat Control 226  
     13.1 Preliminary Considerations 226  
     13.2 Automated Management Systems 226  
        13.2.1 Use of Accumulated Information: Static Control 226  
        13.2.2 Mathematical Simulation as Method of Control 227  
        13.2.3 Dynamic Control: Use of On-line Data 230  
     13.3 Rational Degree of Automation 236  
     References 237  
  14 Off-gas Evacuation and Environmental Protection 238  
     14.1 Preliminary Considerations 238  
     14.2 Formation and Characteristics of DustGas Emissions 238  
        14.2.1 Sources of Emissions 238  
        14.2.2 Primary and Secondary Emissions 239  
        14.2.3 Composition, Temperature, and Heat Content of Off-gases 240  
     14.3 Capturing Emissions: Preparing Emissions for Cleaning in Bag Filters 242  
        14.3.1 General Description of the System 242  
        14.3.2 Problems of Toxic Emissions 243  
        14.3.3 A Simplified Method of Gas Parameters' Calculation in the Direct Evacuation System 245  
     14.4 Calculations 246  
        14.3.3 List of Designations 246  
           14.3.3.0 Amount of CO Evolving from Bath , m 3 /min 247  
           14.3.3.0 Amount of Combustion Products Generated by Burners 248  
           14.3.3.0 Amount of Primary Air Infiltrated into Freeboard, m 3 /min 248  
           14.3.3.0 Maximum Amount of Primary Gases at the Outlet of the Roof Elbow, m 3 /min 249  
           14.3.3.0 Composition of Primary Gases, 0 249  
           14.3.3.0 The Temperature of Primary Gases , C 250  
           14.3.3.0 Physical Heat Content of Primary Gases 250  
           14.3.3.0 Amount of Gases at the Inlet of the Stationary Gas Duct (Cross-Section 202) , m 3 /min 251  
           14.3.3.0 Temperature of Gas Mixture with Air at the Inlet of the Stationary Gas Duct 251  
           14.3.3.0 Amount of Gases After Secondary Post-combustion in the Stationary Gas Duct, , m 3 /min 252  
           14.3.3.0 Composition of Humid Gases After Secondary Post-combustion, 0 252  
           14.3.3.0 Total Heat Content and Temperature of Gases After Secondary Post-combustion , C 252  
           14.3.3.0 Negative Pressure at the Inlet of the Stationary Gas Duct Necessary for Prevention of Uncontrolled Emissions Through the Electrode Ports 253  
        14.3.4 Energy Problems 255  
     14.4 Use of Air Curtains 257  
     References 261  
  Index 262  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz