Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Computational Neuroscience
  Großes Bild
 
Computational Neuroscience
von: Wanpracha Chaovalitwongse, Panos M. Pardalos, Petros Xanthopoulos
Springer-Verlag, 2010
ISBN: 9780387886305
370 Seiten, Download: 8721 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 7  
  Contents 10  
  List of Contributors 13  
  Part I Data Mining 19  
     1 Optimization in Reproducing Kernel Hilbert Spacesof Spike Trains 20  
        1.1 Introduction 21  
        1.2 Some Background on RKHS Theory 22  
        1.3 Inner Product for Spike Times 24  
        1.4 Inner Product for Spike Trains 25  
        1.5 Properties and Estimation of the Memoryless Cross-Intensity Kernel 27  
           1.5.1 Properties 27  
           1.5.2 Estimation 29  
        1.6 Induced RKHS and Congruent Spaces 30  
           1.6.1 Space Spanned by Intensity Functions 31  
           1.6.2 Induced RKHS 31  
           1.6.3 mCI Kernel and the RKHS Induced by 32  
           1.6.4 mCI Kernel as a Covariance Kernel 33  
        1.7 Principal Component Analysis 34  
           1.7.1 Optimization in the RKHS 34  
           1.7.2 Optimization in the Space Spanned by the Intensity Functions 37  
           1.7.3 Results 38  
        1.8 Conclusion 42  
        References 44  
     2 Investigating Functional Cooperation in the Human Brain Using Simple Graph-Theoretic Methods 47  
        2.1 Introduction and Background 47  
        2.2 Graph Theory and Neuroscience 49  
        2.3 A Database of Imaging Experiments 51  
        2.4 The Usefulness of Co-activation Graphs 53  
        2.5 Relating fMRI to EEG 55  
        2.6 Conclusion 57  
        References 57  
     3 Methodological Framework for EEG Feature Selection Based on Spectral and Temporal Profiles 59  
        3.1 Introduction 60  
        3.2 Methods 61  
           3.2.1 Methodology Overview 61  
           3.2.2 Feature Extraction (Step 1) 62  
           3.2.3 Feature Selection (Step 2) 66  
           3.2.4 Feature Refinement (Steps 3 and 4) 66  
        3.3 Results 68  
           3.3.1 Simulation Test 68  
        3.4 Discussion 69  
        3.5 Conclusion 70  
        References 71  
     4 Blind Source Separation of Concurrent Disease-Related Patterns from EEG in Creutzfeldt--Jakob Disease for Assisting Early Diagnosis 73  
        4.1 Introduction 74  
        4.2 Patients and EEG Recordings 78  
        4.3 Methods 80  
           4.3.1 Independent Component Analysis and Extractionof CJD-Related Components 80  
           4.3.2 Bayesian Information Criterion 81  
        4.4 Results 82  
           4.4.1 Determination of the Number of Sources 82  
           4.4.2 CJD-Related Feature Extraction 83  
           4.4.3 Feature Extraction by PCA 85  
        4.5 Discussions 85  
        4.6 Conclusions 88  
        References 89  
     5 Comparison of Supervised Classification Methods with Various Data Preprocessing Procedures for Activation Detectionin fMRI Data 91  
        5.1 Introduction 91  
        5.2 Data Set 92  
        5.3 Data Preprocessing 93  
        5.4 Pattern Recognition Methods 94  
           5.4.1 Fisher Linear Discriminant 95  
           5.4.2 Support Vector Machine 95  
           5.4.3 Gaussian Nave Bayes 96  
           5.4.4 Correlation Analysis 96  
           5.4.5 k-Nearest Neighbor 96  
        5.5 Results 97  
        5.6 Conclusions 98  
        References 98  
     6 Recent Advances of Data Biclustering with Application in Computational Neuroscience 100  
        6.1 Introduction 100  
           6.1.1 Motivation 100  
           6.1.2 Data Input 101  
           6.1.3 Objective of Task 102  
           6.1.4 History 103  
           6.1.5 Outline 104  
        6.2 Biclustering Types and Structures 104  
           6.2.1 Notations 104  
           6.2.2 Bicluster Types 105  
           6.2.3 Biclustering Structures 107  
        6.3 Biclustering Techniques and Algorithms 109  
           6.3.1 Based on Matrix Means and Residues 109  
           6.3.2 Based on Matrix Ordering, Reordering, and Decomposition 111  
           6.3.3 Based on Bipartite Graphs 115  
           6.3.4 Based on Information Theory 118  
           6.3.5 Based on Probability 119  
           6.3.6 Comparison of Biclustering Algorithms 121  
        6.4 Application of Biclustering in Computational Neuroscience 122  
        6.5 Conclusions 124  
        References 124  
     7 A Genetic Classifier Account for the Regulation of Expression 128  
        7.1 Introduction 128  
           7.1.1 Motivation 128  
           7.1.2 Background 129  
        7.2 Model and Methods 130  
           7.2.1 Basic Assumptions 130  
           7.2.2 Model Structure 130  
           7.2.3 Model Equations 131  
           7.2.4 Stability 132  
        7.3 Results 132  
           7.3.1 Composition by Overlap of Nodes 132  
              7.3.1.1 Complete Overlap 132  
              7.3.1.2 Incomplete Overlap 134  
           7.3.2 Multiple Gene Scenarios 134  
              7.3.2.1 Three Genes 134  
           7.3.3 Composition by Infinite Chains 135  
              7.3.3.1 Chain of Genes Including A 1-Product Gene 136  
              7.3.3.2 Chain of Genes Without A 1-Product Gene 136  
           7.3.4 Subchains 137  
        7.4 Discussion 137  
        References 138  
  Part II Modeling 139  
     8 Neuroelectromagnetic Source Imaging of Brain Dynamics 140  
        8.1 Introduction 140  
           8.1.1 Neuronal Origins of Electromagnetic Signals 141  
        8.2 Measurement Modalities 142  
           8.2.1 Magnetoencephalography (MEG) 142  
           8.2.2 Electroencephalography (EEG) 143  
           8.2.3 Electrocorticography (ECoG) 143  
        8.3 Data Preprocessing 143  
        8.4 Overview of Modeling Steps 145  
           8.4.1 Modeling of Neural Generators 145  
           8.4.2 Anatomical Modeling of Head Tissues and Neural Sources 146  
           8.4.3 Multimodal Geometric Registration 146  
           8.4.4 Forward Modeling 147  
           8.4.5 Inverse Modeling 147  
        8.5 Parametric Dipole Modeling 148  
           8.5.1 Uncorrelated Noise Model 148  
           8.5.2 Correlated Noise Model 149  
           8.5.3 Global Minimization 150  
        8.6 Source Space-Based Distributed and Sparse Methods 150  
           8.6.1 Bayesian Maximum a Posteriori (MAP) Estimates 151  
           8.6.2 Dynamic Statistical Parametric Mapping (dSPM) 154  
           8.6.3 Standardized Low Resolution Brain Electromagnetic Tomography (sLORETA) 155  
           8.6.4 Sparse Bayesian Learning (SBL) and Automatic Relevance Determination (ARD) 156  
        8.7 Spatial Scanning and Beamforming 158  
           8.7.1 Matched Filter 159  
           8.7.2 Multiple Signal Classification (MUSIC) 159  
           8.7.3 Linearly Constrained Minimum Variance (LCMV) Beamforming 160  
           8.7.4 Synthetic Aperture Magnetometry (SAM) 160  
           8.7.5 Dynamic Imaging of Coherent Sources (DICS) 161  
           8.7.6 Other Spatial Filtering Methods 161  
        8.8 Comparison of Methods 162  
        8.9 Conclusion 162  
        References 164  
     9 Optimization in Brain? -- Modeling Human Behavior and Brain Activation Patterns with Queuing Network and Reinforcement Learning Algorithms 169  
        9.1 Introduction 169  
        9.2 Modeling Behavioral and Brain Imaging Phenomena in Transcription Typing with Queuing Networks and Reinforcement Learning Algorithms 171  
           9.2.1 Behavioral Phenomena 171  
           9.2.2 Brain Imaging Phenomena 171  
           9.2.3 A Queuing Network Model with Reinforcement Learning Algorithms 172  
              9.2.3.1 The Static Portion of the Queuing Network Model 172  
              9.2.3.2 The Dynamic Portion of the Queuing Network Model: Self-Organization of the Queuing Network with Reinforcement Learning Algorithms 173  
           9.2.4 Model Predictions of three Skill Learning Phenomenaand two Brain Imaging Phenomena 176  
              9.2.4.1 Predictions of the three Skill Learning Phenomena 176  
              9.2.4.2 Predictions of the First Brain Imaging Phenomenon 177  
              9.2.4.3 Predictions of the Second Brain Imaging Phenomenon 177  
           9.2.5 Simulation of the three Skill Learning Phenomenaand the two Brain Imaging Phenomena 178  
              9.2.5.1 The First and the Second Skill Learning Phenomena 178  
              9.2.5.2 The Third Skill Learning Phenomena 178  
              9.2.5.3 The First Brain Imaging Phenomena 179  
              9.2.5.4 The Second Brain Imaging Phenomena 179  
        9.3 Modeling the Basic PRP and Practice Effect on PRP with Queuing Networks and Reinforcement Learning Algorithms 180  
           9.3.1 Modeling the Basic PRP and the Practice Effect on PRPwith Queuing Networks 180  
              9.3.1.1 Learning Process in Individual Servers 182  
              9.3.1.2 Learning Process in the Simplest Queuing Network with two Routes 183  
           9.3.2 Predictions of the Basic PRP and the Practice Effect on PRP with the Queuing Network Model 184  
           9.3.3 Simulation Results 184  
        9.4 Discussion 186  
        References 189  
     10 Neural Network Modeling of Voluntary Single-Joint Movement Organization I. Normal Conditions 192  
        10.1 Introduction 192  
        10.2 Models and Theories of Motor Control 193  
        10.3 The Extended VITE--FLETE Models Without Dopamine 195  
        10.4 Conclusion 200  
        References 200  
     11 Neural Network Modeling of Voluntary Single-Joint Movement Organization II. Parkinson's Disease 203  
        11.1 Introduction 203  
        11.2 Brain Anatomy in Parkinson's Disease 204  
        11.3 Empirical Signatures 206  
        11.4 Is There Dopaminergic Innervation of the Cortexand Spinal Cord? 206  
        11.5 Effects of Dopamine Depletion on Neuronal, Electromyographic, and Movement Parameters in PD Humans and MPTP Animals 207  
           11.5.1 Cellular Disorganization in Cortex 207  
           11.5.2 Reduction of Neuronal Intensity and of Rate of Development of Neuronal Discharge in the PrimaryMotor Cortex 208  
           11.5.3 Significant Increase in Mean Duration of Neuronal Discharge in Primary Motor Cortex Preceding and Following Onset of Movement 208  
           11.5.4 Prolongation of Behavioral Simple Reaction Time 209  
           11.5.5 Repetitive Triphasic Pattern of Muscle Activation 210  
           11.5.6 Electromechanical Delay Time Is Increased 210  
           11.5.7 Depression of Rate of Development and Peak Amplitudeof the First Agonist Burst of EMG Activity 210  
           11.5.8 Movement Time Is Significantly Increased 211  
           11.5.9 Reduction of Peak Velocity 212  
           11.5.10 Reduction of Peak Force and Rate of Force Production 212  
           11.5.11 Movement Variability 212  
        11.6 The Extended VITE--FLETE Models with Dopamine 213  
        11.7 Simulated Effects of Dopamine Depletion on the Cortical Neural Activities 216  
        11.8 Simulated Effects of Dopamine Depletion on EMG Activities 217  
        11.9 Conclusion 219  
        References 220  
     12 Parametric Modeling Analysis of Optical Imaging Data on Neuronal Activities in the Brain 223  
        12.1 Introduction 224  
        12.2 Methods 226  
           12.2.1 Recording of Optical Signals and Preprocessing 226  
           12.2.2 Modeling 228  
           12.2.3 Classification of Optical Signals Based on Activation Timing 229  
        12.3 Results 231  
           12.3.1 Estimation of STF Model Parameters 231  
           12.3.2 Classification of Pixel Activity Patterns 232  
        12.4 Discussion 234  
        References 234  
     13 Advances Toward Closed-Loop Deep Brain Stimulation 236  
        13.1 Introduction 236  
        13.2 Nerve Stimulation 237  
        13.3 Local Field Potentials 238  
        13.4 Parkinson's Disease 239  
           13.4.1 Treatments 240  
        13.5 Deep Brain Stimulation 241  
           13.5.1 DBS Mechanism 241  
           13.5.2 Apparatus 241  
           13.5.3 Stimulus Specifications 242  
           13.5.4 DBS Programming 244  
           13.5.5 Side Effects 246  
        13.6 Biosignal Processing 246  
           13.6.1 Features 247  
           13.6.2 Classifiers 247  
           13.6.3 Feature Selection 248  
        13.7 Closed-Loop DBS 248  
           13.7.1 Demand-Controlled DBS 249  
           13.7.2 ALOPEX and DBS 250  
           13.7.3 Genetic Algorithms and DBS 251  
           13.7.4 Hardware Implementations 251  
        13.8 Related Advances in Other Neuroprosthetic Research 252  
           13.8.1 Closed-Loop Cardiac Pacemaker Technology 253  
           13.8.2 Brain-to-Computer Interface 253  
        13.9 Neural Network Modeling and the Basal Ganglia 254  
        13.10 Summary 255  
        References 255  
     14 Molecule-Inspired Methods for Coarse-Grain Multi-System Optimization 263  
        14.1 Introduction 264  
        14.2 Biomolecular Computing In Vitro 265  
        14.3 Biomolecular Computing In Silico 266  
        14.4 Neural Nets in Biomolecules 268  
        14.5 Conclusions and Future Work 272  
        References 274  
  Part III Brain Dynamics/Synchronization 276  
     15 A Robust Estimation of Information Flow in Coupled Nonlinear Systems 277  
        15.1 Introduction 277  
        15.2 Methodology 279  
           15.2.1 Transfer Entropy (TE) 279  
           15.2.2 Improved Computation of Transfer Entropy 280  
              15.2.2.1 Selection of k 280  
              15.2.2.2 Selection of l 280  
              15.2.2.3 Selection of Radius r 281  
           15.2.3 Statistical Significance of Transfer Entropy 283  
           15.2.4 Detecting Causality Using Transfer Entropy 284  
        15.3 Simulation Example 284  
           15.3.1 Statistical Significance of TE and NTE 285  
           15.3.2 Robustness to Noise 287  
        15.4 Discussion and Conclusion 288  
        References 289  
     16 An Optimization Approach for Finding a Spectrum of Lyapunov Exponents 290  
        16.1 Introduction 290  
        16.2 Lyapunov Exponents 291  
        16.3 An Optimization Approach 293  
           16.3.1 Theory 294  
           16.3.2 Implementation Details 295  
              16.3.2.1 Phase Space Reconstruction 296  
        16.4 Models Used in the Computational Experiments 299  
           16.4.1 Lorenz Attractor 299  
           16.4.2 Rössler Attractor 300  
           16.4.3 Hénon Map 301  
           16.4.4 The Hénon--Heiles Equations 301  
        16.5 Computational Experiments 302  
           16.5.1 Numerical Computations 302  
           16.5.2 Sensitivity Analysis 304  
        16.6 Summary and Conclusion 306  
        References 306  
     17 Dynamical Analysis of the EEG and Treatment of Human Status Epilepticus by Antiepileptic Drugs 309  
        17.1 Introduction 310  
        17.2 Materials and Methods 311  
           17.2.1 Recording Procedure and EEG Data 311  
              17.2.1.1 EEG from Barrow Neurological Institute, Phoenix, Arizona 312  
              17.2.1.2 EEG from Mayo Clinic Hospital, Scottsdale, Arizona 312  
           17.2.2 Measures of Brain Dynamics 313  
              17.2.2.1 Measure of Chaos(STLmax) 313  
              17.2.2.2 Measure of Dynamical Entrainment 315  
        17.3 Results 315  
        17.4 Conclusion 317  
        References 318  
     18 Analysis of Multichannel EEG Recordings Based on Generalized Phase Synchronization and Cointegrated VAR 320  
        18.1 Introduction 320  
        18.2 Integrated and Cointegrated VAR 322  
           18.2.1 Augmented Dickey--Fuller Test for Testing the Null Hypothesis of a Unit Root 323  
           18.2.2 Estimation of Cointegrated VAR(p) Processes 325  
           18.2.3 Testing for the Rank of Cointegration 327  
        18.3 The Role of Phase Synchronization in Neural Dynamics 328  
        18.4 Phase Estimation Using Hilbert Transform 329  
        18.5 Multivariate Approach to Phase Synchrony via Cointegrated VAR 330  
           18.5.1 Cointegration Rank as a Measure of Synchronization among Different EEG Channels 331  
           18.5.2 Absence Seizures 334  
           18.5.3 Numerical Study of Synchrony in Multichannel EEG Recordings from Patients with Absence Epilepsy 334  
        18.6 Conclusion 338  
           18.6.1 Phillips--Ouliaris Cointegration Test 339  
        References 341  
     19 Antiepileptic Therapy Reduces Coupling Strength Among Brain Cortical Regions in Patients with Unverricht--Lundborg Disease: A Pilot Study 343  
        19.1 Introduction 344  
        19.2 Data Information 347  
        19.3 Synchronization Measures 348  
           19.3.1 Mutual Information 348  
           19.3.2 Nonlinear Interdependencies 350  
        19.4 Statistical Tests and Data Analysis 351  
        19.5 Conclusion and Discussion 354  
        References 355  
     20 Seizure Monitoring and Alert System for Brain Monitoring in an Intensive Care Unit 358  
        20.1 Introduction 359  
        20.2 Preictal Transition and Seizure Prediction 360  
        20.3 Methods 362  
           20.3.1 Chaos Theory and Epilepsy 362  
           20.3.2 Statistical Method for Pairwise Comparison of STLMAX 364  
           20.3.3 Finding Critical Sites by Quadratic Optimization Approach 365  
        20.4 Two Main Components of the Seizure Monitoring and Alert System 366  
           20.4.1 Algorithm for Generating Automatic Warnings about Impending Seizure from EEG 367  
        20.5 Conclusions 368  
        References 368  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz