Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
The Chloroplast - Basics and Applications
  Großes Bild
 
The Chloroplast - Basics and Applications
von: Constantin A. Rebeiz, Christoph Benning, Hans Bohnert, Henry Daniell, J. Kenneth Hoober, Hartmut K.
Springer-Verlag, 2010
ISBN: 9789048185313
453 Seiten, Download: 14417 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Advances in Photosynthesis and Respiration 8  
     The Chloroplast: Basics and Applications 4  
        Contents 16  
        Preface 26  
        Contributors 38  
        Chapter 1: Investigation of Possible Relationships Between the Chlorophyll Biosynthetic Pathway, the Assembly of Chlorophyll– 42  
           I Introduction 44  
           II Agricultural Productivity and Photosynthetic Efficiency 44  
              A The Primary Photochemical Act of Photosystem I (PS I) I and II 44  
              B Conversion of Carbon Dioxide into Carbohydrates 45  
              C Theoretical Maximal Energy Conversion Efficiency of the Photosynthetic Electron Transport System of Green Plants 45  
              D Actual Energy Conversion Efficiency of the PETS of Green Plants Under Field Conditions 46  
           III Molecular Basis of the Discrepancy Between the Theoretical Maximal Efficiency of the Photosynthetic Electron Transport Cha 46  
              A Contribution of Extrinsic Photosynthetic Electron Transport System Parameters to the Discrepancy between the Theoretical Phot 46  
              B Contribution of Intrinsic Photosynthetic Electron Transport Chain Parameters to the Discrepancy Between the Theoretical Pho 46  
           IV Correction of the Antenna/Photosystem Chlorophyll Mismatch 47  
              A State of the Art in Our Understanding of Chlorophyll Biosynthesis 47  
                 1 The Single-Branched Chl Biosynthetic Pathway Does Not Account for the Formation of All the Chlorophyll in Green Plants 47  
                 2 The Chlorophyll of Green Plants Is Formed Via a Multibranched Biosynthetic Pathway 48  
              B Thylakoid Apoprotein Biosynthesis 49  
              C Assembly of Chlorophyll–Protein Complexes 50  
                 1 Assembly of Chlorophyll–Protein Complexes: The Single-Branched Chlorophyll Biosynthetic Pathway (SBP)-Single Location Model 50  
                 2 Assembly of Chlorophyll–Protein Complexes: The Single- Branched Chlorophyll Biosynthetic Pathway-Multilocation Model 51  
                 3 Assembly of Chlorophyll–Protein Complexes: The Multi-Branched Chlorophyll Biosynthetic Pathway (MBP)-Sublocation Model 51  
              D Which Chl–Thylakoid Apoprotein Assembly Model Is Validated by Experimental Evidence 52  
                 1 Can Resonance Excitation Energy Transfer Between Anabolic Tetrapyrroles and ­Chlorophyll–Protein Complexes be ­Demonstrated? 53  
                    (a) Induction of Tetrapyrrole Accumulation 53  
                    (b) Selection of Appropriate Chlorophyll .a. Acceptors 54  
                    (c) Acquisition of In Situ Emission and Excitation Spectra at 77 K 54  
                    (d) Generation of Reference In Situ tetrapyrrole Excitation Spectra 54  
                    (e) Processing of Acquired Excitation Spectra 54  
                    (f) Demonstration of Resonance Excitation Energy Transfer Between Anabolic Tetrapyrroles and Chlorophyll–Protein Complexes 54  
                 2 Development of Analytical Tools for Measuring Distances Separating Various Chlorophyll–Protein Complexes from Anabolic Tetr 55  
                    (a) Determination of the Molar Extinction Coefficients of Total Chl .a. In Situ at 77 K 55  
                    (b) Estimation of the Molar Extinction Coefficients of Chl a ~F685, ~F695 and ~F735 at 77 K 55  
                    (c). Calculation of Distances R Separating Anabolic Tetrapyrroles from Various Chl a–protein Complexes 55  
                    (d) Calculation of R.0 57  
                    (e) Calculation of k, the Orientation Dipole 57  
                    (f) Calculation of the Overlap Integral .Ju at 77K 57  
                    (g) Calculation of n0., the Mean Wavenumber of Absorption and Fluorescence Peaks of the Donor at 77 .K 57  
                    (h) Calculation of t0., the Inherent Fluorescence Lifetime of Donors at 77 K 58  
                    (i) Calculation of Fy.Da. the Relative Fluorescence Yield of Tetrapyrrole Donors in the Presence of Chl Acceptors In Situ at 77 58  
                    (j) Calculation of tD., the Actual Mean Fluorescence Lifetime of the Excited Donor in the Presence of Acceptor at 77 K 59  
                    (k) Calculation of R.0. for Proto, Mp(e) and Pchlide .a. donors-Chl .a. Acceptors Pairs at 77 K 59  
                    (l) Calculation of E, the Efficiency of Energy Transfer In Situ at 77 K 59  
                    (m) Calculation of the Distances That Separate Proto, Mp(e), DV Pchlide .a., and MV Pchlide .a. from Various Chl .a. Acceptors 60  
                 3 Testing the Functionalities of the Various Chl–Thylakoid Biogenesis Models 60  
                    (a) The Single-Branched Pathway-Single Location Model Is Not Compatible with Resonance Excitation Energy Transfer Between An 61  
                    (b) The SBP-Multilocation Model Is Not Compatible with the Realities of Chl Biosynthesis in Green Plants 61  
                    (c) The MBP-Sublocation Model Is Compatible with the Realities of Chl Biosynthesis in Green Plants, and with Resonance Excitati 61  
              E Guidelines and Suggestions to Bioengineer Plants with Smaller Photosynthetic Unit Size 62  
                 1 Selection of Mutants 62  
                    (a) Mutants of Higher Plants Other Than Arabidopsis 62  
                    (b) Arabidopsis Mutants 62  
                    (c) Lower Plant Mutants 62  
                 2 Preparation of Photosynthetic Particles 62  
                 3 Determination of Biosynthetic Routes Functional in a Specific Mutant or Photosynthetic Particle 62  
           References 63  
        Chapter 2: Evidence for Various 4-Vinyl Reductase Activities in Higher Plants 66  
           I Introduction 67  
           II Materials and Methods 70  
              A Plant Material 70  
              B Light Pretreatment 70  
              C Chemicals 70  
              D Preparation of Divinyl Protochlorophyllide .a 70  
              E Preparation of Divinyl Chlorophyllide .a 70  
              F Preparation of Divinyl Mg-Protoporphyrin Mono Methyl Ester 70  
              G Isolation of Crude and Purified Plastids 70  
              H Preparation of Plastid Membranes and Stroma 71  
              I Preparation of Envelope Membranes 71  
              J Solubilization of [4-Vinyl] Reductase(s) by 3-[(3-Cholamidopropyl)dimethylammonio]-1-Propanesulfonate 71  
              K Assay of [4-Vinyl] Reductase Activities 71  
              L Protein Determination 71  
              M Extraction and Determination of the Amounts of Divinyl and Monovinyl Tetrapyrroles 71  
           III Results 71  
              A Experimental Strategy 71  
              B Detection of [4-Vinyl]Protochlorophyllide .a. Reductase, [4-Vinyl]Mg-Protoporphyrin Monoester Reductase and [4-Vinyl]Mg-Prot 72  
              C Solubilization of [4-Vinyl]Protochlorophyllide .a. Reductase, [4-Vinyl]Mg-Protoporphyrin Monoester Reductase and [4-Vinyl]Mg- 72  
              D 4-Vinyl Side Chain Reduction Occurs Before Isocycle Ring Formation in Photoperiodically-Grown Barley 72  
              E [4-Vinyl] Chlorophyllide .a. Reductase and [4-Vinyl]Protochlorophyllide .a. Reductase Activities do not Occur in Barley Et 73  
              F [4-Vinyl] Protochlorophyllide .a. Reductase Activity Is Detectable in Greening Barley 73  
              G NADPH, but Not NADH is a Cofactor for [4-Vinyl]Chlorophyllide Reductase and [4-Vinyl]Protochlorophyllide Reductase Solubilize 73  
              H The Presence of NADP or Vitamin B.3. in the Incubation Buffer Has No Effect on the Activities of [4-Vinyl]Chlorophyllide .a. 74  
              I Demonstration of [4-Vinyl] Protochlorophyllide a Reductase and [4-Vinyl] Chlorophyllide .a. Reductase Activities in Barley Ch 74  
              J Effects of Various Light Treatments on [4-Vinyl] Clorophyllide .a. Reductase Activity 75  
           IV Discussion 75  
           References 78  
        Chapter 3: Control of the Metabolic Flow in Tetrapyrrole Biosynthesis: Regulation of Expression and Activity of Enzymes in th 80  
           I Introduction 81  
           II Mg Protoporphyrin IX Chelatase 81  
              A Structure and Catalytic Activity 81  
              B Control of Expression, Activity and Localisation 83  
              C Analysis of Mutants and Transgenic Plants 84  
           III S-Adenosyl-L-Methionine:Mg Protoporphyrin IX Methyltransferase 85  
           IV Mg Protoporphyrin IX Monomethylester Cyclase 86  
           V Divinyl Reductase 87  
           VI Regulatory Aspects of Mg Porphyrin Synthesis 87  
           References 90  
        Chapter 4: Regulation and Functions of the Chlorophyll Cycle 95  
           I Introduction 96  
              A Distribution of Chlorophyll .b 96  
              B Establishment of the Chl Cycle 98  
                 1 Chl .b. Synthesis 98  
                 2 Chl .b. to Chl .a. Conversion 99  
                 3 Why Is the Interconversion of Chl .a. and Chl .b. Called the Chl Cycle? 100  
           II Pathway and Enzymes of the Chlorophyll (Chl) CycleA Pathway of the Chl Cycle 100  
              B Enzymes of the Chl Cycle 102  
                 1 Chlorophyllide .a. Oxygenase 102  
                 2 Chl .b. Reductase 103  
                 3 HM-Chl .a. Reductase 103  
           III Diversity and Evolutionary Aspects of Chlorophyllide .a. Oxygenase 103  
              A Diversity of CAO Sequences 103  
              B Domain Structure of CAO 106  
              C Distribution of Chl .b. Reductase 106  
           IV Regulation of the Chl Cycle 107  
              A Regulation of the Chl .a. to .b. Conversion 107  
                 1 Transcriptional Control 107  
                 2 The Signal Transduction Pathway 107  
                 3 Post-transcriptional Control 108  
              B Regulation of the Chl .b. to .a. Conversion 108  
           V Roles of the Chl Cycle in the Construction of the Photosynthetic Apparatus 109  
              A Coordination of the Chl cycle and the Construction of the Photosynthetic Apparatus 109  
              B Construction and Deconstruction of the Photosynthetic Apparatus and Its Coordination with the Chl .b. to .a. Conversion Syste 112  
           References 113  
        Chapter 5: Magnesium Chelatase 118  
           I Introduction 119  
           II The 40 kDa Subunit 119  
           III Comparision of 40 kDa Subunit with the Golgi Membrane Protein NSF-D2, Heat Shock Locus Protein HslU and the .d¢. Subun 120  
           IV The 70 kDa Subunit and Its Complex Formation with the 40 kDa Subunit 122  
           V The 140 kDa Subunit 124  
           VI The Gun4 Protein 125  
           References 126  
        Chapter 6: The Enigmatic Chlorophyll .a. Molecule in the Cytochrome .b6f. Complex 128  
           I Introduction: On the Presence of Two Pigment Molecules in the Cytochrome .b6f. Complex 129  
           II Crystal Structures of the Cyt .b6f. Complex: The Environment of the Bound Chlorophyll 129  
           III Additional Function(s) of the Bound Chlorophyll 130  
           IV Additional Function of the .b.-Carotene 131  
           References 131  
        Chapter 7: The Non-mevalonate DOXP/MEP (Deoxyxylulose 5-Phosphate/Methylerythritol 4-Phosphate) Pathway of Chloroplast Isopre 133  
           I Introduction 134  
           II The Cytosolic Acetate/Mevalonate (MVA) Pathway of Isopentenyl Pyro phosphate (IPP) Biosynthesis and Its Inhibition 135  
           III The Plastidic DOXP/MEP Pathway of IPP and Its Inhibition 137  
           IV Labeling Experiments of Chloroplast Prenyllipids 138  
           V Compartmentation of Isoprenoid Biosynthesis in Plants 139  
           VI Branching Point of DOXP/MEP Pathway with Other Chloroplast Pathways 140  
           VII Cross-Talk Between Both Cellular Isoprenoid Pathways 142  
           VIII Earlier Observations on Cooperation of Both Isoprenoid Pathways 143  
           IX Distribution of the DOXP/MEP and the MVA Pathways in Photosynthetic Algae and Higher Plants 144  
           X Evolutionary Aspects of the DOXP/MEP Pathway 147  
           XI Biosynthesis of Isoprene and Methylbutenol 147  
           XII Level of Chlorophylls, Carotenoids and Prenylquinones in Sun and Shade Leaves 149  
           XIII Inhibition of Chlorophyll and Carotenoid Biosynthesis by 5-Ketoclomazone 150  
           XIV Conclusion 151  
           References 152  
        Chapter 8: The Methylerythritol 4-Phosphate Pathway: Regulatory Role in Plastid Isoprenoid Biosynthesis 157  
           I Introduction 158  
           II Regulatory Role of the MEP Pathway in Plastid Isoprenoid Biosynthesis 159  
           III Crosstalk Between the MVA and the MEP Pathways 161  
           IV Perspectives for Metabolic Engineering of Plastid Isoprenoids 162  
           References 162  
        Chapter 9: The Role of Plastids in Protein Geranylgeranylation in Tobacco BY-2 Cells 165  
           I Introduction 166  
           II Protein Isoprenylation in Plants 167  
              A The Chemical Modification of a C-Terminal Cysteine 167  
              B Functions of Protein Prenylation in Plants 167  
              C Isoprenylation of Proteins in Tobacco BY-2 Cells 167  
              D Origin of the Prenyl Residue Used for Protein Modification 167  
                 1 A Double Origin of Prenyl Diphosphates 167  
                 2 Construction of a Tool to Test the Origin of Geranylgeranyl Residues in Prenylated Proteins 168  
                    (a) State of the Art 168  
                    (b) Tobacco BY-2 Cell Suspensions as a Suitable Tool 168  
                    (c) Description of the System and Results 169  
           III Conclusion and Perspectives 172  
           References 172  
        Chapter 10: The Role of the Methyl-Erythritol-Phosphate (MEP)Pathway in Rhythmic Emission of Volatiles 176  
           I Introduction 177  
           II The MEP Pathway and Rhythmic Emission of Floral Volatiles 178  
           III The MEP Pathway and Rhythmic Emission of Leaf Volatiles 184  
           IV The MEP Pathway and Rhythmic Emission of Herbivore-Induced Plant Volatiles 185  
           V The MEP Pathway and Rhythmic Emission of Isoprene 185  
           VI Conclusions 187  
           References 187  
        Chapter 11: Tocochromanols: Biological Function and Recent Advances to Engineer Plastidial Biochemistry for Enhanced Oil Seed 191  
           I Introduction 192  
           II Tocochromanol Biosynthesis and Regulation 195  
           III Tocochromanol Pathway Engineering for Enhancement of Vitamin E 197  
           IV Optimized Tocochromanol Composition 197  
           V Enhancement of Total Tocochromanol Content 198  
           VI Enhancement of Tocotrienol Biosynthesis 200  
           VII Conclusions and Outlook 200  
           References 202  
        Chapter 12: The Anionic Chloroplast Membrane Lipids: Phosphatidylglycerol and Sulfoquinovosyldiacylglycerol 206  
           I Introduction 207  
           II Biosynthesis of Plastidic Phosphatidylglycerol 209  
           III Biosynthesis of Sulfoquinovosyldiacylglycerol 210  
           IV Functions of Plastid Phosphatidylglycerol 211  
           V Functions of Sulfoquinovosyldiacylglycerol 212  
           VI The Importance of Anionic Lipids in Chloroplasts 213  
           VII Future Perspectives 214  
           References 215  
        Chapter 13: Biosynthesis and Function of Monogalactosyldiacylglycerol (MGDG), the Signature Lipid of Chloroplasts 219  
           I Introduction 220  
           II Identification of MGDG Synthase in Seed Plants 220  
           III Biochemical Properties of MGDG Synthase 221  
              A Enzymatic Features of MGDG Synthase 221  
              B Subcellular Localization of MGDG Synthase 221  
              C Three-Dimensional Structure of MGDG Synthase 222  
              D Two Types of MGDG Synthase in Arabidopsis 222  
              E MGDG Synthesis in Non-photosynthetic Organs 223  
           IV Function and Regulation of MGDG Synthase 223  
              A Regulation of Type A MGDG Synthase 223  
              B Regulation of Type B MGDG Synthase 224  
              C In Vivo Function of MGDG Synthase by Mutant Analyses 225  
           V Substrate Supply Systems for MGDG Synthesis 226  
              A DAG Supply to the Outer Envelope 227  
              B DAG Supply to the Inner Envelope 229  
           VI MGDG Synthesis in Photoautotrophic Prokaryotes 230  
           VII Future Perspectives 231  
           References 232  
        Chapter 14: Synthesis and Function of the Galactolipid Digalactosyldiacylglycerol 237  
           I Introduction 238  
           II Structure and Occurrence of Digalactosyldiacylglycerol 238  
           III Synthesis of Digalactosyldiacylglycerol and Oligogalactolipids 239  
           IV Function of Digalactosyldiacylglycerol in Photosynthesis 240  
           V Digalactosyldiacylglycerol as Surrogate for Phospholipids 241  
           VI Changes in Galactolipid Content During Stress and Senescence 242  
           VII Conclusions 243  
           References 243  
        Chapter 15: The Chemistry and Biology of Light-Harvesting Complex II and Thylakoid Biogenesis: .raison d’etre. of Chlorophyll 246  
           I Introduction 247  
              A Chlorophyll .a 248  
              B Chlorophyll .b 249  
              C Chlorophyll .c 249  
              D Chlorophyll .d 249  
           II Coordination Chemistry of Chlorophyll and Ligands 250  
           III Binding of Chlorophyll to Proteins 251  
           IV Chlorophyll Assignments in Light Harvesting Complex II (LHCII) 253  
           V Cellular Location of Chlorophyll .b. Synthesis and LHCII Assembly 255  
           VI Chlorophyllide .a. Oxygenase 257  
           VII Conclusions 258  
           References 259  
        Chapter 16: Folding and Pigment Binding of Light-Harvesting Chlorophyll .a/b. Protein (LHCIIb) 263  
           I Introduction 264  
           II Time-Resolved Measurements of LHCIIb Assembly In Vitro 265  
              A Fluorescence as a Monitor for LHCIIb Assembly 265  
              B A Two-step Model of Pigment Binding 267  
              C Protein Folding During LHCIIb Assembly 270  
           III Concluding Remarks 273  
           References 273  
        Chapter 17: The Plastid Genome as a Platform for the Expression of Microbial Resistance Genes 277  
           I Introduction 278  
           II Yield and Resistance 279  
           III .Aspergillus flavus.: Managing a Food and Feed Safety Threat 280  
              A Economic and Health Impacts 280  
              B Approaches to Intervention 280  
           IV The Case for Transgenic Interventions 282  
              A Modifying the Nuclear Genome for Resistance 282  
           V Plastid Transformation 283  
              B Features of the Plastid Expression System 283  
                 1 The Plastome 284  
                    (a) Integration of Foreign Sequences 284  
                    (b) Maternal Inheritance 284  
              C Moving Beyond the Model System 284  
           VI Identifying Candidate Genes for Aflatoxin Resistance 284  
              A Chloroperoxidase 285  
                 1 Antimicrobial Potential 285  
                 2 Expression of CPO-P in Transgenic Plants 285  
           VII An Environmentally Benign Approach 285  
              A Plastid Transformation Vector 285  
              B Determinants of Foreign Gene Expression in Plastids 286  
                 1 The .psbA. 5.¢. UTR 286  
                    (a) The Potential of .psbA. 5.¢. UTR Stems From Its Endogenous Role in Plastids 286  
                    (b) Translational Control Is Highly Regulated and Dependent on Imported Trans-acting Protein Factors 286  
                    (c) Light Regulation of Translation Via the .psbA. 5.¢. UTR 287  
              C The CPO-P Transplastomic Lines 287  
                 1 Evaluating CPO-P Expression 287  
                    (a) Protein Expression 287  
                    (b) Analysis of Foreign Transcripts 287  
                    (c) Continued Analysis 287  
           VIII Future Challenges: Control of Aflatoxin Contamination in Cottonseed 288  
              A Taking a Direct Approach 288  
              B Taking an Indirect Approach 288  
                 1 Drought Tolerance 289  
                 2 Resistance to Herbivory 289  
              C Generation of Transplastomic Cotton 289  
           IX Conclusion 289  
           References 289  
        Chapter 18: Chloroplast Genetic Engineering: A Novel Technology for Agricultural Biotechnology and Bio-pharmaceutical Industr 295  
           I Introduction 296  
           II Genome and Organization 297  
           III Concept of Chloroplast Transformation 298  
           IV Advantages of Plastid Transformation 299  
           V Chloroplast Transformation Vectors and Mode of Transgene Integration into Chloroplast Genome 301  
           VI Methods of Plastid Transformation and Recovery of Transplastomic Plants 302  
           VII Current Status of Plastid Transformation 304  
           VIII Application of Chloroplast Technology for Agronomic Traits 305  
           IX Chloroplast-Derived Vaccine Antigens 307  
           X Chloroplast-Derived Biopharmaceutical Proteins 309  
           XI Chloroplast-Derived Industrially Valuable Biomaterials 310  
           References 312  
        Chapter 19: Engineering the Sunflower Rubisco Subunits into Tobacco Chloroplasts: New Considerations 317  
           I Introduction 319  
           II Transforming the Tobacco Plastome with Sunflower Rubisco Genes 320  
              A Replacing the Tobacco .rbc.L with Sunflower .rbc.L.S 320  
              B Co-transplanting .rbc.L.S. and a Codon-Modified Sunflower .cmrbc.S Gene 320  
                 1 A Need to Co-engineer Cognate L- and S-Subunits 320  
              2 Altering the Codon Bias of a Sunflower .Rbc.S.s. Gene 321  
                 3 Using the T7g10 5.¢.UTR to Regulate Sunflower S-Subunit Translation 322  
              C Transformation, Selection and Growth of the Transplastomic Lines 322  
           III Inadvertent Gene Excision by Recombination of Duplicated .psb.A 3.¢.UTR Sequence 322  
              A Preferential Loss of Plastome Copies Containing .cmrbc.S.S 322  
              B Why Were the .cmrbc.S.S. Containing Plastome Copies Lost? 323  
           IV Simple Removal of .aad.A in T.0. t.Rst.SLA by Transient CRE Recombinase Expression 323  
              A Bacteriophage P1 CRE-.lox. Site-specific Recombination 323  
              B Removing .aad.A by Bombarding with Plasmid pKO27 324  
              1 Selection and Screening for .Daad.A Lines 324  
                 2 Screening the T.1. Progeny for .aad.A Loss and No Incorporation of the pKO27 T-DNA 325  
           V Growth Phenotypes of the tob.Rst., t.Rst.LA and t.Rst.L Lines 325  
              A Elevated CO.2. Partial Pressures Augment the Growth of the Juvenile Transformants 325  
              B The Comparable Phenotype and Growth Rates of the Transgenic Lines 325  
                 1 Differences in Leaf and Apical Meristem Development 325  
                 2 Shoot Development 327  
              C Leaf and Floral Development 327  
           VI Expression of the Hybrid L.s.S.t. Rubisco in Mature Leaves 328  
              A Steady-State .rbc.L.S. mRNA Levels 328  
              B Rubisco and Protein Content 328  
              C Translational Efficiency and/or Folding and Assembly Limit L.s.S.t. Production 330  
           VII Whole Leaf Gas Exchange Measurements of the L.s.S.t. Kinetics 330  
              A Measuring Gamma Star (.G.*) 330  
              B Measuring the L.s.S.t. Michaelis Constants for CO.2. and O.2 331  
           VIII Future Considerations for Transplanting Foreign Rubiscos into Tobacco Plastids 331  
              A Improving L.s.S.t. Synthesis 331  
                 1 Limitations to Translational Processing of .rbc.L.S 331  
                 2 Subunit Assembly Limitations 333  
              B The Assembly and Kinetic Capacity of Other Hybrid Rubiscos 333  
              C Constraints on S-Subunit Engineering in Tobacco 334  
              D Rubisco Activase Compatibility 334  
           IX Quicker Screening of the Assembly and Kinetics of Genetically Modified L.8.S.8. Enzymes in Tobacco Chloroplasts 334  
           References 335  
        Chapter 20: Engineering Photosynthetic Enzymes Involved in CO.2.–Assimilation by Gene Shuffling 339  
           I Introduction 340  
           II Potential Targets for Improving Plant Photosynthesis 340  
           III Directed Molecular Evolution Provides a Useful Tool to Engineer Selected Enzymes 342  
           IV Improving Rubisco CatalyticEfficiency by Gene Shuffling 344  
              A Attempts to Express .Arabidopsis thaliana. Rubisco in .Chlamydomonas reinhardtii 344  
              B Shuffling the .Chlamydomonas reinhardtii. Rubisco Large Subunit 346  
           V Improving Rubisco Activase Thermostability by Gene Shuffling 348  
           VI Future Prospects 350  
           References 352  
        Chapter 21: Elevated CO.2. and Ozone: Their Effects on Photosynthesis 355  
           I Introduction 356  
           II Regulation of the Photosynthetic Apparatus: Metabolic and Environmental Signals 357  
           III Possible Scenarios Explaining Effects of Elevated [CO.2.] and [O.3.] on Plant Behavior in the Altered Earth Atmosphere 359  
              A Plant Responses to Elevated [CO.2] 360  
              B Plant Responses to Tropospheric [O.3.] 361  
              C Combined Effects of [CO.2] and [O.3] 362  
           IV Benefits from Model Species:.Arabidopsis thaliana. and .Thellungiella halophila 363  
           V Discussion 368  
              A The Importance of Model Species 368  
              B Gene Networks Explaining Transcript Behavior 368  
           VI Conclusions 372  
        Chapter 22: Regulation of Photosynthetic Electron Transport 379  
           I Introduction 380  
           II Chlorophyll Fluorescence: A Non-disruptive Tool for Electron Transport Analysis 381  
           III Thermal Dissipation of Absorbed Excessive Light Energy from PSII 382  
           IV Balancing Excitation Energy Between Photosystems by State Transition 382  
           V Photorespiration and the Water–Water Cycle: Alternative Electron Sinks? 383  
           VI The Discovery of PGR5-Dependent PSI Cyclic Electron Transport 384  
           VII PSI Cyclic Electron Transport Mediated by Chloroplast NAD(P)H Dehydrogenase 386  
           VIII PSI Cyclic Electron Transport and Thermal Dissipation 387  
           IX PSI Cyclic Electron Transport and State Transition 388  
           X The Water–Water Cycle and PSI Cyclic Electron Transport 388  
           XI Concluding Remarks 388  
           References 389  
        Chapter 23: Mechanisms of Drought and High Light Stress Tolerance Studied in a Xerophyte, .Citrullus lanatus. (Wild Watermelon) 394  
           I Introduction 395  
           II Experimental Procedures 396  
           III Physiological Response of Wild Watermelon 397  
           IV Enzymes for Scavenging Reactive Oxygen Species 399  
           V Cytochrome .b561. and Ascorbate Oxidase 400  
           VI Global Changes in the Proteomes 402  
           VII Citrulline Metabolism and Function 402  
           VIII Concluding Remarks 404  
           References 405  
        Chapter 24: Antioxidants and Photo-oxidative Stress Responses in Plants and Algae 409  
           I Types of Reactive Oxygen Species 410  
           II Sources of Reactive Oxygen Species in Algae and Plants 411  
           III Functions of Reactive Oxygen Species 411  
           IV Oxidative Damage in Chloroplasts 412  
           V Avoidance of Reactive Oxygen Species Production 413  
           VI Non-enzymatic Mechanisms for Scavenging Reactive Oxygen Species 413  
              A Hydrophilic Antioxidants 414  
                 1 Ascorbate 414  
                 2 Glutathione 415  
              B Lipophilic Antioxidants 415  
                 1 Tocopherol 415  
                 2 Carotenoids 416  
              C Antioxidant Interactions 417  
           VII Enzymatic Mechanisms for Scavenging Reactive Oxygen Species 418  
              A Superoxide Dismutase 418  
              B Catalase 419  
              C Ascorbate Peroxidase 419  
              D Glutathione Peroxidase 419  
              E Thioredoxin 420  
              F Glutaredoxin 421  
              G Peroxiredoxin 421  
           References 422  
        Chapter 25: Singlet Oxygen-Induced Oxidative Stress in Plants 427  
           I Introduction 428  
              II Formation of Singlet Oxygen in Plants 428  
           III Generation of Singlet Oxygen from Chlorophyll Biosynthesis Intermediates 430  
           IV Porphyrin-Generating Compounds 430  
              A 5-Aminolevulinic Acid 430  
              B Diphenyl Ethers 431  
           V Type I and Type II Photosensitization Reactions of Tetrapyrroles 431  
           VI Intracellular Destruction of Singlet Oxygen 432  
           VII Singlet Oxygen-Mediated Oxidative Damage to the Photosynthetic Apparatus 432  
              A Generation of Tetrapyrrole-Induced Singlet Oxygen in Chloroplasts 433  
              B Singlet Oxygen-Induced Impairment of the Electron Transport Chain 433  
              C Role of Singlet Oxygen Scavengers 434  
              D Impact of .1.O.2. on Chlorophyll a Fluorescence 434  
              E Effect of Singlet Oxygen on Thermoluminiscence 436  
           VIII Singlet Oxygen-induced Oxidative Damage in Mutants 436  
              A Chlorophyll Anabolic Mutants 436  
              B Chlorophyll Catabolic Mutants 438  
           IX Future Prospects 438  
           References 439  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz