Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
March's Advanced Organic Chemistry - Reactions, Mechanisms, and Structure
  Großes Bild
 
March's Advanced Organic Chemistry - Reactions, Mechanisms, and Structure
von: Michael B. Smith
Wiley, 2013
ISBN: 9781118472255
2075 Seiten, Download: 70326 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: A (einfacher Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 1  
     Contents 7  
     Preface 15  
     Common Abbreviations 23  
     Biographical Statement 27  
     Part I: Introduction 29  
        1. Localized Chemical Bonding 31  
           1.A. Covalent Bonding 31  
           1.B. Multiple Valence 34  
           1.C. Hybridization 35  
           1.D. Multiple Bonds 37  
           1.E. Photoelectron Spectroscopy 39  
           1.F. Electronic Structures of Molecules 42  
           1.G. Electronegativity 43  
           1.H. Dipole Moment 46  
           1.I. Inductive and Field Effects 47  
           1.J. Bond Distances 49  
           1.K. Bond Angles 53  
           1.L. Bond Energies 55  
        2. Delocalized Chemical Bonding 59  
           2.A. Molecular Orbitals 60  
           2.B. Bond Energies and Distances in Compounds Containing Delocalized Bonds 63  
           2.C. Molecules that have Delocalized Bonds 65  
           2.D. Cross-Conjugation 70  
           2.E. The Rules of Resonance 71  
           2.F. The Resonance Effect 73  
           2.G. Steric Inhibition of Resonance and the Influences of Strain 74  
           2.H. p?–d? Bonding. Ylids 77  
           2.I. Aromaticity 78  
              2.I.i. Six-Membered Rings 82  
              2.I.ii. Five, Seven, and Eight-Membered Rings 85  
              2.I.iii. Other Systems Containing Aromatic Sextets 90  
           2.J. Alternant and Nonalternant Hydrocarbons 91  
           2.K. Aromatic Systems with Electron Numbers other than Six 93  
              2.K.i. Systems of Two Electrons 94  
              2.K.ii. Systems of Four Electrons: Antiaromaticity 95  
              2.K.iii. Systems of Eight Electrons 99  
              2.K.iv. Systems of Ten Electrons 100  
              2.K.v. Systems of more than Ten Electrons: 4n + 2 Electrons 102  
              2.K.vi. Systems of more than 10 Electrons: 4n Electrons 107  
           2.L. Other Aromatic Compounds 110  
           2.M. Hyperconjugation 113  
           2.N. Tautomerism 117  
              2.N.i. Keto–Enol Tautomerism 117  
              2.N.ii. Other Proton-Shift Tautomerism 120  
        3. Bonding Weaker Than Covalent 124  
           3.A. Hydrogen Bonding 124  
           3.B. ?–? Interactions 131  
           3.C. Addition Compounds 132  
              3.C.i. Electron Donor–Acceptor Complexes 132  
              3.C.ii. Crown Ether Complexes and Cryptates 136  
              3.C.iii. Inclusion Compounds 141  
              3.C.iv. Cyclodextrins 144  
           3.D. Catenanes and Rotaxanes 146  
           3.E. Cucurbit[n]Uril-Based Gyroscane 149  
        4. Stereochemistry and Conformation 150  
           4.A. Optical Activity and Chirality 150  
              4.A.i. Dependence of Rotation on Conditions of Measurement 152  
           4.B. What Kinds of Molecules Display Optical Activity? 153  
           4.C. The Fischer Projection 164  
           4.D. Absolute Configuration 165  
              4.D.i. The CAHN–INGOLD–PRELOG System 166  
              4.D.ii. Methods of Determining Configuration 169  
           4.E. The Cause of Optical Activity 173  
           4.F. Molecules with more than One Stereogenic Center 174  
           4.G. Asymmetric Synthesis 177  
           4.H. Methods of Resolution 182  
           4.I. Optical Purity 188  
           4.J. cis–trans Isomerism 190  
              4.J.i. cis-trans Isomerism Resulting from Double Bonds 190  
              4.J.ii. cis–trans Isomerism of Monocyclic Compounds 193  
              4.J.iii. cis–trans Isomerism of Fused and Bridged Ring Systems 195  
           4.K. Out–In Isomerism 196  
           4.L. Enantiotopic and Diastereotopic Atoms, Groups, and Faces 198  
           4.M. Stereospecific and Stereoselective Syntheses 201  
           4.N. Conformational Analysis 201  
              4.N.i. Conformation in Open-Chain Systems 203  
              4.N.ii. Conformation in Six-Membered Rings 208  
              4.N.iii. Conformation in Six-Membered Rings Containing Heteroatoms 214  
              4.N.iv. Conformation in Other Rings 216  
           4.O. Molecular Mechanics 218  
           4.P. STRAIN 220  
              4.P.i. Strain in Small Rings 221  
              4.P.ii. Strain in Other Rings 227  
              4.P.iii. Unsaturated Rings 229  
              4.P.iv. Strain Due to Unavoidable Crowding 232  
        5. Carbocations, Carbanions, Free Radicals, Carbenes, and Nitrenes 236  
           5.A. Carbocations 236  
              5.A.i. Nomenclature 236  
              5.A.ii. Stability and Structure of Carbocations 237  
              5.A.iii. The Generation and Fate of Carbocations 246  
           5.B. Carbanions 249  
              5.B.i. Stability and Structure 249  
              5.B.ii. The Structure of Organometallic Compounds 256  
              5.B.iii. The Generation and Fate of Carbanions 261  
           5.C. Free Radicals 262  
              5.C.i. Stability and Structure 262  
              5.C.ii. The Generation and Fate of Free Radicals 273  
              5.C.iii. Radical Ions 276  
           5.D. Carbenes 277  
              5.D.i. Stability and Structure 277  
              5.D.ii. The Generation and Fate of Carbenes 281  
           5.E. Nitrenes 285  
        6. Mechanisms and Methods of Determining them 289  
           6.A. Types of Mechanism 289  
           6.B. Types of Reaction 290  
           6.C. Thermodynamic Requirements for Reaction 292  
           6.D. Kinetic Requirements for Reaction 294  
           6.E. The Baldwin Rules for Ring Closure 298  
           6.F. Kinetic and Thermodynamic Control 299  
           6.G. The Hammond Postulate 300  
           6.H. Microscopic Reversibility 301  
           6.I. Marcus Theory 301  
           6.J. Methods of Determining Mechanisms 303  
              6.J.i. Identification of Products 303  
              6.J.ii. Determination of the Presence of an Intermediate 303  
              6.J.iii. The Study of Catalysis 305  
              6.J.iv. Isotopic Labeling 305  
              6.J.v. Stereochemical Evidence 306  
              6.J.vi. Kinetic Evidence 306  
              6.J.vii. Isotope Effects 313  
        7. Irradiation Processes in Organic Chemistry 317  
           7.A. Photochemistry 317  
              7.A.i. Excited States and the Ground State 317  
              7.A.ii. Singlet and Triplet States: “Forbidden” Transitions 319  
              7.A.iii. Types of Excitation 320  
              7.A.iv. Nomenclature and Properties of Excited States 322  
              7.A.v. Photolytic Cleavage 323  
              7.A.vi. The Fate of the Excited Molecule: Physical Processes 324  
              7.A.vii. The Fate of the Excited Molecule: Chemical Processes 329  
              7.A.viii. The Determination of Photochemical Mechanisms 334  
           7.B. Sonochemistry 335  
           7.C. Microwave Chemistry 337  
        8. Acids and Bases 340  
           8.A. Brønsted Theory 340  
              8.A.i. Brønsted Acids 341  
              8.A.ii. Brønsted Bases 348  
           8.B. The Mechanism of Proton-Transfer Reactions 351  
           8.C. Measurements of Solvent Acidity 352  
           8.D. Acid and Base Catalysis 355  
           8.E. Lewis Acids and Bases 358  
              8.E.i. Hard–Soft Acids–Bases 359  
           8.F. The Effects of Structure on the Strengths of Acids and Bases 362  
           8.G. The Effects of the Medium on Acid and Base Strength 371  
        9. Effects of Structure and Medium on Reactivity 375  
           9.A. Resonance and Field Effects 375  
           9.B. Steric Effects 377  
           9.C. Quantitative Treatments of the Effect of Structure on Reactivity 380  
           9.D. Effect of Medium on Reactivity and Rate 389  
              9.D.i. High Pressure 390  
              9.D.ii. Water and Other Non-Organic Solvents 391  
              9.D.iii. Ionic Solvents 392  
              9.D.iv. Solventless Reactions 394  
     Part II: Introduction 395  
        10. Aliphatic Substitution, Nucleophilic and Organometallic 401  
           10.A. Mechanisms 401  
              10.A.i. The SN2 Mechanism 402  
              10.A.ii. The SN1 Mechanism 407  
              10.A.iii. Ion Pairs in the SN1 Mechanism 411  
              10.A.iv. Mixed SN1 and SN2 Mechanisms 415  
           10.B. SET Mechanisms 417  
           10.C. The Neighboring-Group Mechanism 419  
              10.C.i. Neighboring-Group Participation by ? and ? Bonds: Nonclassical Carbocations 422  
           10.D. The SNi Mechanism 436  
           10.E. Nucleophilic Substitution at an Allylic Carbon: Allylic Rearrangements 437  
           10.F. Nucleophilic Substitution at an Aliphatic Trigonal Carbon: The Tetrahedral Mechanism 441  
           10.G. Reactivity 445  
              10.G.i. The Effect of Substrate Structure 445  
              10.G.ii. The Effect of the Attacking Nucleophile 454  
              10.G.iii. The Effect of the Leaving Group 460  
              10.G.iv. The Effect of the Reaction Medium 463  
              10.G.v. Phase-Transfer Catalysis 470  
              10.G.vi. Influencing Reactivity by External Means 473  
              10.G.vii. Ambident (Bidentant) Nucleophiles: Regioselectivity 474  
              10.G.viii. Ambident Substrates 478  
           10.H. Reactions 479  
              10.H.i. Oxygen Nucleophiles 479  
              10.H.ii. Attack by OR at an Alkyl Carbon 487  
              10.H.iii. Sulfur Nucleophiles 503  
              10.H.iv. Nitrogen Nucleophiles 509  
              10.H.v. Halogen Nucleophiles 526  
              10.H.vi. Carbon Nucleophiles 538  
        11. Aromatic Substitution, Electrophilic 597  
           11.A. Mechanisms 597  
              11.A.i. The Arenium Ion Mechanism 598  
              11.A.ii. The SE1 Mechanism 604  
           11.B. Orientation and Reactivity 604  
              11.B.i. Orientation and Reactivity in Monosubstituted Benzene Rings 604  
              11.B.ii. The Ortho/Para Ratio 608  
              11.B.iii. Ipso Attack 609  
              11.B.iv. Orientation in Benzene Rings with More Than One Substituent 611  
              11.B.v. Orientation in Other Ring Systems 612  
           11.C. Quantitative Treatments of Reactivity in the Substrate 614  
           11.D.A Quantitative Treatment of Reactivity of the Electrophile: The Selectivity Relationship 616  
           11.E. The Effect of the Leaving Group 619  
           11.F. Reactions 619  
              11.F.i. Hydrogen as the Leaving Group in Simple Substitution Reactions 620  
              11.F.ii. Hydrogen as the Leaving Group in Rearrangement Reactions 663  
              11.F.iii. Other Leaving Groups 669  
        12. Aliphatic, Alkenyl, and Alkynyl Substitution, Electrophilic and Organometallic 677  
           12.A. Mechanisms 678  
              12.A.i. Bimolecular Mechanisms: SE2 and SEi 678  
              12.A.ii. The SE1 Mechanism 682  
              12.A.iii. Electrophilic Substitution Accompanied by Double-Bond Shifts 685  
              12.A.iv. Other Mechanisms 686  
           12.B. Reactivity 686  
           12.C. Reactions 688  
              12.C.i. Hydrogen as Leaving Group 688  
              12.C.ii. Metals as Leaving Groups 726  
              12.C.iii. Halogen as Leaving Group 741  
              12.C.iv. Carbon Leaving Groups 746  
              12.C.v. Electrophilic Substitution at Nitrogen 755  
        13. Aromatic Substitution: Nucleophilic and Organometallic 760  
           13.A. Mechanisms 760  
              13.A.i. The SNAr Mechanism 760  
              13.A.ii. The SN1 Mechanism 763  
              13.A.iii. The Benzyne Mechanism 765  
              13.A.iv. The SRN1 Mechanism 767  
              13.A.v. Other Mechanisms 768  
           13.B. Reactivity 769  
              13.B.i. The Effect of Substrate Structure 769  
              13.B.ii. The Effect of the Leaving Group 772  
              13.B.iii. The Effect of the Attacking Nucleophile 773  
           13.C. Reactions 773  
              13.C.i. All Leaving Groups Except Hydrogen and N2+ 774  
              13.C.ii. Hydrogen as Leaving Group 812  
              13.C.iii. Nitrogen as Leaving Group 816  
              13.C.iv. Rearrangements 825  
        14. Substitution Reactions: Radical 831  
           14.A. Mechanisms 831  
              14.A.i. Radical Mechanisms in General 831  
              14.A.ii. Free Radical Substitution Mechanisms 835  
              14.A.iii. Mechanisms at an Aromatic Substrate 837  
              14.A.iv. Neighboring-Group Assistance in Free Radical Reactions 838  
           14.B. Reactivity 840  
              14.B.i. Reactivity for Aliphatic Substrates 840  
              14.B.ii. Reactivity at a Bridgehead 845  
              14.B.iii. Reactivity in Aromatic Substrates 846  
              14.B.iv. Reactivity in the Attacking Radical 847  
              14.B.v. The Effect of Solvent on Reactivity 848  
           14.C. Reactions 849  
              14.C.i. Hydrogen as a Leaving Group 849  
              14.C.ii. N2 as Leaving Group 874  
              14.C.iii. Metals as Leaving Groups 877  
              14.C.iv. Halogen as Leaving Group 879  
              14.C.v. Sulfur as Leaving Group 879  
              14.C.vi. Carbon as Leaving Group 881  
        15. Addition to Carbon–Carbon Multiple Bonds 887  
           15.A. Mechanisms 887  
              15.A.i. Electrophilic Addition 887  
              15.A.ii. Nucleophilic Addition 893  
              15.A.iii. Free Radical Addition 895  
              15.A.iv. Cyclic Mechanisms 897  
              15.A.v. Addition to Conjugated Systems 897  
           15.B. Orientation and Reactivity 899  
              15.B.i. Reactivity 899  
              15.B.ii. Orientation 902  
              15.B.iii. Stereochemical Orientation 905  
              15.B.iv. Addition to Cyclopropane Rings 907  
           15.C. Reactions 909  
              15.C.i. Isomerization of Double and Triple Bonds 909  
              15.C.ii. Reactions in which Hydrogen Adds to One Side 911  
              15.C.iii. Reactions in which Hydrogen Adds to Neither Side 1009  
              15.C.iv. Cycloaddition Reactions 1042  
        16. Addition to Carbon–Hetero Multiple Bonds 1095  
           16.A. Mechanism and Reactivity 1095  
              16.A.i. Nucleophilic Substitution at an Aliphatic Trigonal Carbon: The Tetrahedral Mechanism 1097  
           16.B. Reactions 1103  
              16.B.i. Reactions in which Hydrogen or a Metallic Ion Adds to the Heteroatom 1103  
              16.B.ii. Acyl Substitution Reactions 1217  
              16.B.iii. Reactions in which Carbon Adds to the Heteroatom 1267  
              16.B.iv. Addition to Isocyanides 1274  
              16.B.v. Nucleophilic Substitution at a Sulfonyl Sulfur Atom 1276  
        17. Eliminations 1281  
           17.A. Mechanisms and Orientation 1281  
              17.A.i. The E2 Mechanism 1282  
              17.A.ii. The E1 Mechanism 1289  
              17.A.iii. The E1cB Mechanism 1290  
              17.A.iv. The E1–E2–E1cB Spectrum 1295  
              17.A.v. The E2C Mechanism 1296  
           17.B. Regiochemistry of the Double Bond 1297  
           17.C. Stereochemistry of the Double Bond 1301  
           17.D. Reactivity 1302  
              17.D.i. Effect of Substrate Structure 1302  
              17.D.ii. Effect of the Attacking Base 1304  
              17.D.iii. Effect of the Leaving Group 1304  
              17.D.iv. Effect of the Medium 1305  
           17.E. Mechanisms and Orientation in Pyrolytic Eliminations 1306  
              17.E.i. Mechanisms 1306  
              17.E.ii. Orientation in Pyrolytic Eliminations 1309  
              17.E.iii. 1,4-Conjugate Eliminations 1310  
           17.F. Reactions 1310  
              17.F.i. Reactions in which C=C and C?C Bonds are Formed 1310  
              17.F.ii. Fragmentations 1335  
              17.F.iii. Reactions in which C?N or C=N Bonds are Formed 1338  
              17.F.iv. Reactions in which C=O Bonds are Formed 1342  
              17.F.v. Reactions in which N=N Bonds are Formed 1343  
              17.F.vi. Extrusion Reactions 1344  
        18. Rearrangements 1349  
           18.A. Mechanisms 1350  
              18.A.i. Nucleophilic Rearrangements 1350  
              18.A.ii. The Actual Nature of the Migration 1352  
              18.A.iii. Migratory Aptitudes 1356  
              18.A.iv. Memory Effects 1358  
           18.B. Longer Nucleophilic Rearrangements 1359  
           18.C. Free Radical Rearrangements 1361  
           18.D. Carbene Rearrangements 1365  
           18.E. Electrophilic Rearrangements 1365  
           18.F. Reactions 1365  
              18.F.i. 1,2-Rearrangements 1366  
              18.F.ii. Non-1,2 Rearrangements 1408  
        19. Oxidations and Reductions 1461  
           19.A. Mechanisms 1462  
           19.B. Reactions 1464  
              19.B.i. Oxidations 1465  
              19.B.ii. Reductions 1525  
     Appendix A: The Literature of Organic Chemistry 1597  
     Appendix B: Classification of Reactions by Type of Compounds Synthesized 1633  
     Indexes 1659  
        Author Index 1659  
        Subject Index 1863  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz