Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Statistical Theory and Modeling for Turbulent Flows
  Großes Bild
 
Statistical Theory and Modeling for Turbulent Flows
von: P. A. Durbin, B. A. Pettersson Reif
Wiley, 2010
ISBN: 9780470972069
376 Seiten, Download: 7250 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: A (einfacher Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Statistical Theory and Modeling for Turbulent Flows 3  
     Contents 9  
     Preface 13  
        Preface to second edition 13  
        Preface to first edition 13  
           Motivation 14  
           Epitome 15  
           Acknowledgements 15  
     Part I FUNDAMENTALS OF TURBULENCE 17  
        1 Introduction 19  
           1.1 The turbulence problem 20  
           1.2 Closure modeling 25  
           1.3 Categories of turbulent flow 26  
           Exercises 30  
        2 Mathematical and statistical background 31  
           2.1 Dimensional analysis 31  
              2.1.1 Scales of turbulence 34  
           2.2 Statistical tools 35  
              2.2.1 Averages and probability density functions 35  
              2.2.2 Correlations 41  
           2.3 Cartesian tensors 50  
              2.3.1 Isotropic tensors 52  
              2.3.2 Tensor functions of tensors 53  
           Exercises 58  
        3 Reynolds averaged Navier–Stokes equations 61  
           3.1 Background to the equations 62  
           3.2 Reynolds averaged equations 64  
           3.3 Terms of kinetic energy and Reynolds stress budgets 65  
           3.4 Passive contaminant transport 70  
           Exercises 72  
        4 Parallel and self-similar shear flows 73  
           4.1 Plane channel flow 74  
              4.1.1 Logarithmic layer 77  
              4.1.2 Roughness 79  
           4.2 Boundary layer 81  
              4.2.1 Entrainment 85  
           4.3 Free-shear layers 86  
              4.3.1 Spreading rates 92  
              4.3.2 Remarks on self-similar boundary layers 92  
           4.4 Heat and mass transfer 93  
              4.4.1 Parallel flow and boundary layers 94  
              4.4.2 Dispersion from elevated sources 98  
           Exercises 102  
        5 Vorticity and vortical structures 107  
           5.1 Structures 109  
              5.1.1 Free-shear layers 109  
              5.1.2 Boundary layers 113  
              5.1.3 Non-random vortices 118  
           5.2 Vorticity and dissipation 118  
              5.2.1 Vortex stretching and relative dispersion 120  
              5.2.2 Mean-squared vorticity equation 122  
           Exercises 124  
     Part II SINGLE-POINT CLOSURE MODELING 125  
        6 Models with scalar variables 127  
           6.1 Boundary-layer methods 128  
              6.1.1 Integral boundary-layer methods 129  
              6.1.2 Mixing length model 131  
           6.2 The k –å model 137  
              6.2.1 Analytical solutions to the k –å model 139  
              6.2.2 Boundary conditions and near-wall modifications 144  
              6.2.3 Weak solution at edges of free-shear flow 151  
           6.3 The k –ù model 152  
           6.4 Stagnation-point anomaly 155  
           6.5 The question of transition 157  
              6.5.1 Reliance on the turbulence model 160  
              6.5.2 Intermittency equation 161  
              6.5.3 Laminar fluctuations 163  
           6.6 Eddy viscosity transport models 164  
           Exercises 168  
        7 Models with tensor variables 171  
           7.1 Second-moment transport 171  
              7.1.1 A simple illustration 172  
              7.1.2 Closing the Reynolds stress transport equation 173  
              7.1.3 Models for the slow part 175  
              7.1.4 Models for the rapid part 178  
           7.2 Analytic solutions to SMC models 185  
              7.2.1 Homogeneous shear flow 185  
              7.2.2 Curved shear flow 188  
              7.2.3 Algebraic stress approximation and nonlinear eddy viscosity 192  
           7.3 Non-homogeneity 195  
              7.3.1 Turbulent transport 196  
              7.3.2 Near-wall modeling 197  
              7.3.3 No-slip condition 198  
              7.3.4 Nonlocal wall effects 200  
           7.4 Reynolds averaged computation 210  
              7.4.1 Numerical issues 211  
              7.4.2 Examples of Reynolds averaged computation 214  
           Exercises 229  
        8 Advanced topics 233  
           8.1 Further modeling principles 233  
              8.1.1 Galilean invariance and frame rotation 235  
              8.1.2 Realizability 237  
           8.2 Second-moment closure and Langevin equations 240  
           8.3 Moving equilibrium solutions of SMC 242  
              8.3.1 Criterion for steady mean flow 243  
              8.3.2 Solution in two-dimensional mean flow 244  
              8.3.3 Bifurcations 247  
           8.4 Passive scalar flux modeling 251  
              8.4.1 Scalar diffusivity models 251  
              8.4.2 Tensor diffusivity models 252  
              8.4.3 Scalar flux transport 254  
              8.4.4 Scalar variance 257  
           8.5 Active scalar flux modeling: effects of buoyancy 258  
              8.5.1 Second-moment transport models 261  
              8.5.2 Stratified shear flow 262  
           Exercises 263  
     Part III THEORY OF HOMOGENEOUS TURBULENCE 265  
        9 Mathematical representations 267  
           9.1 Fourier transforms 268  
           9.2 Three-dimensional energy spectrum of homogeneous turbulence 270  
              9.2.1 Spectrum tensor and velocity covariances 271  
              9.2.2 Modeling the energy spectrum 273  
           Exercises 282  
        10 Navier–Stokes equations in spectral space 285  
           10.1 Convolution integrals as triad interaction 285  
           10.2 Evolution of spectra 287  
              10.2.1 Small-k behavior and energy decay 287  
              10.2.2 Energy cascade 289  
              10.2.3 Final period of decay 292  
           Exercises 293  
        11 Rapid distortion theory 297  
           11.1 Irrotational mean flow 298  
              11.1.1 Cauchy form of vorticity equation 298  
              11.1.2 Distortion of a Fourier mode 301  
              11.1.3 Calculation of covariances 303  
           11.2 General homogeneous distortions 307  
              11.2.1 Homogeneous shear 309  
              11.2.2 Turbulence near a wall 312  
           Exercises 316  
     Part IV TURBULENCE SIMULATION 319  
        12 Eddy-resolving simulation 321  
           12.1 Direct numerical simulation 322  
              12.1.1 Grid requirements 322  
              12.1.2 Numerical dissipation 324  
              12.1.3 Energy-conserving schemes 326  
           12.2 Illustrations 329  
           12.3 Pseudo-spectral method 334  
           Exercises 338  
        13 Simulation of large eddies 341  
           13.1 Large eddy simulation 341  
              13.1.1 Filtering 342  
              13.1.2 Subgrid models 346  
           13.2 Detached eddy simulation 355  
           Exercises 359  
     References 361  
     Index 369  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz